

Свидетельство СРО Ассоциация проектировщиков «Проектирование дорог и инфраструктуры» №СРО-П-168-22112011
Заказчик - ООО «Салым Петролеум Девелопмент»

Обустройство Верхнесалымского месторождения. Нефтегазосборный трубопровод. Участок Куст скважин №111 – Узел УН181

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Оценка воздействия на окружающую среду

Книга 2 Приложения

Изм	№док	Подп.	Дата

Свидетельство СРО Ассоциация проектировщиков «Проектирование дорог и инфраструктуры» №СРО-П-168-22112011
Заказчик - ООО «Салым Петролеум Девелопмент»

Обустройство Верхнесалымского месторождения. Нефтегазосборный трубопровод. Участок Куст скважин №111 – Узел УН181

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Оценка воздействия на окружающую среду

Книга 2 Приложения

SUP-WILL-K111-003-PD-00-OBOC2

ı	ене	рал	ІЬНЫ	ид	ире	ктор
---	-----	-----	------	----	-----	------

О.С. Голубева

Главный инженер проекта

А.В. Сухарев

Изм	№док	Подп.	Дата

Взам.

Подпись и дата

2

СОДЕРЖАНИЕ ТОМА

Обозначение	Наименование	Примечание
SUP-WILL-K111-003-PD-00- OBOC2.C	Содержание	
SUP-WILL-K111-003-PD-00- OBOC2, TY	Текстовая часть	

Взам. инв. №											
Подпись и дата											
Подпи		Изм.	Кол.уч.	Лист	№док.	Подп.	Дата	SUP-WILL-K111-003-PI	D-00-OB	OC2.C	
		Раз	раб.	Кузн	-		11.23	3 Стадия		Лист	Листов
10 17 1.	38							<u> </u>		1	
Инв. № подл.	2023/0038	Н. ко	онтр. 1П	Гребен Суха	щикова арев	to This of	11.23 11.23	Содержание	геотехника • инжиниринг • консалтинг		

ТЕКСТОВАЯ ЧАСТЬ

Содержание

TEKCTOBAЯ ЧАСТЬ	3
Приложение А Письма, полученные от уполномоченных органов	4
Приложение Б Справки ФГБУ «Обь-Иртышское УГМС»	14
Приложение В Параметры выбросов загрязняющих веществ	15
Приложение Г Расчет выбросов загрязняющих веществ в атмосФерный воздух	17
Приложение Д Расчет рассеивания вредных веществ в атмосфере	52
Приложение Е Нормативы предельно допустимых выбросов загрязняющих веществ	68
Приложение Ж Расчет уровня шума	70
Приложение К Расчет количества образующихся отходов производства и потребления	
Приложение М Расчет платы за негативное воздействие на окружающую среду	78
Приложение Р Лицензия на деятельность по обращению с отходами	79

Взам. инв. №										
Подпись и дата			-				SUP-WILL-K111-003-PD-	00-OBC)C2.TY	
_		Разра	б. к	узнецов		11.23		Стадия	Лист	Листов
№ подл.	038						Текстовая часть	П	1	
NHB. Ne	Н. контр. ГИП			р. Гребенщикова — 11.23 Сухарев — 11.23		_	. 3 14015		геотехника • инж	иниринг • консалтинг

Департамент недропользования и природных ресурсов Ханты-Мансийского автономного округа – Югры (Деппедра и природных ресурсов Югры)

ул. Студенческая, дом 2. г. Ханты-Мансийск, Ханты-Мансийский автономный округ – Югра, (Тюменская область), 628011 Телефон: (3467) 36-01-10 (3151) Факс:(3467) 32-63-03 E-mail: depprirod@admhmao.ru

12-Исх-27806 28.09.2023 Генеральному директору ООО «ТюменьГеоКом»

Е.Н. Аксенову

Па исх. от 8 сентября 2023 года № 100-23

На Ваш запрос сообщаю, что на территории проведения инженерноэкологических изыскапий по объектам:

«Обустройство Верхпесалымского месторождения. Коридор коммуникаций на Куст скважин №111» ;

«Обустройство Верхнесалымского месторождения. Нефтегазосборный трубопровод. Участок Куст скважин №111 – Узел УН181»;

«Обустройство Верхнесалымского месторождения. Куст скважин №111», расположенных в охотпичьих угодьях Пефтеюганского района Ханты-Мансийского автономного округа — Югры, информация о прохождении путей миграции охотничьих видов животных, мест их массового скопления и размножения, а также ключевых орнитологических территорий (в соответствии со Схемой размещения, использования и охраны охотпичьих угодий на территории Ханты-Мансийского автономного округа — Югры от 24 июня 2013 года №84) не зарегистрирована.

Инв. № подл.

2

Данную информация Вы можете получить при выполнении проектноизыскательских работ.

С информацией о видовом составе, численности и плотности охотничьих животных в разрезе административных районов, можно ознакомится на официальном веб — сайте http://www.depprirod.admbmao.ru в разделе «Деятельность», «Использование объектов животного мира», «Численность охотничьих ресурсов в ХМАО — Югре», «Численность охотничьих зверей по материалам ЗМУ» и «Численность охотничьих зверей по материалам летпе-осеппих учетов».

С описанием границ общедоступных и закрепленных охотничьих угодий, расположенных на территории муниципальных районов Ханты-Мансийского автономного округа — Югры, можно ознакомится на официальном веб — сайте http://www.depprirod.admhmao.ru в разделе «Деятельность», «Использование объектов животного мира», «Территориальное охотустройство».

Нормативы изъятия охотничьих ресурсов в 2017 году утверждены Приказом Министерства природных ресурсов и экологии Российской Федерации от 30 апреля 2010 года № 138 «Об утверждении нормативов допустимого изъятия охотничьих ресурсов и нормативов численности охотничьих ресурсов в охотничьих угодьях».

Заместитель директора Департамента

Владелец Комиссаров Александр Юрьевич **Дейс**твителен с 29.03.2023 по 21.06.2024 А.Ю. Комиссаров

Исполнитель: инженер отдела мониторинга, кадастра п регулирования численности объектов животного мира В.Л. Нестерова 813467) 36-01-10 (3025)

4нв. № подл. Подпись и дата Взам. инв. №

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата	

МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ (Минприроды России)

ул. Б. Грузинская, д. 4/6, Москва, 125993, тел. (499) 254-48-00, факс (499) 254-43-10 сайт: www.mnr.gov.ru

> e-mail: minprirody@mnr.gov.ru телетайп 112242 СФЕН

30.04.2020 №
Ha №

ОТ

ФАУ «Главгосэкспертиза» Минстроя России

Фуркасовский пер., д.6, Москва, 101000

О предоставлении информации для инженерно-экологических изысканий

Министерство природных ресурсов и экологии Российской Федерации в соответствии с письмом от 04.02.2020 № 09-1/1137-СБ направляет актуализированный перечень особо охраняемых природных территорий (далее — ООПТ) федерального значения.

Дополнительно сообщаем, что перечень содержит действующие и планируемые к созданию ООПТ федерального значения, создаваемые в рамках национального проекта «Экология» (далее — Проект). Окончание реализации Проекта запланировано на 31.12.2024. Учитывая изложенное данное письмо считается действительным до наступления указанной даты.

Дополнительно сообщаем, что в настоящее время не для всех федеральных ООПТ установлены охранные зоны, учитывая изложенное перечень не содержит районы в которых находятся охранные зоны федеральных ООПТ.

Минприроды России считаем возможным использовать данное письмо с приложенным перечнем при проведении инженерных изысканий и разработке проектной документации на территориях административно-территориальных единиц субъекта Российской Федерации отсутствующих в перечне, в качестве информации уполномоченного государственного органа исполнительной власти в сфере охраны окружающей среды об отсутствии ООПТ федерального значения.

При реализации объектов на территории административно-территориальных единиц субъекта Российской Федерации указанных в перечне и сопредельных с ними, необходимо обращаться за информацией подтверждающей отсутствии/наличии ООПТ федерального значения в федеральный орган исполнительной власти, в чьем ведении находится соответствующая ООПТ.

Минприроды России просит направить данное письмо с перечнем для использования в работе и размещения на официальных сайтах в подведомственные организации, уполномоченные на проведение государственной экологической экспертизы регионального уровня, а также на проведение государственной экспертизы проектной документации регионального уровня.

Приложение: на 31 листе.

Заместитель директора Департамента государственной политики и регулирования в сфере развития ООПТ и Байкальской природной территории

Исп. Гапиенко С.А. (495) 252-23-61 (доб. 19-45)

А.И. Григорьев

Инв. № подл. Подпись и дата

MB.

Взам.

2

Приложение к	письму	Минприроды	России
om		$\mathcal{N}_{\!$	

Принадлежность

Название ООПТ

Перечень муниципальных образований субъектов Российской Федерации, в границах которых имеются ООПТ федерального значения, а также территории, зарезервированные под создание новых ООПТ федерального значения в рамках национального проекта «Экология».

Категория

субъек та РФ	Российской Федерации	но- территориальн ого единица субъекта РФ	федерального ООПТ		
1	Республика Адыгея	Майкопский район	Государственн ый природный заповедник	Кавказский имени Х.Г. Шапошникова	Минприроды России
	Республика Адыгея	г. Майкоп	Дендрологичес кий парк и ботанический сад	Дендрарий Адыгейского государственного университета	Минобрнауки России, ФГБОУ высшего профессиональног о образования "Адыгейский государственный университет"
2	Республика Башкортостан	Бурзянский район	Государственн ый природный заповедник	Башкирский	Минприроды России
	Республика Башкортостан	Бурзянский район	Государственн ый природный заповедник	Шульган-Таш	Минприроды России
	Республика Башкортостан	Белорецкий район ЗАТО г. Межгорье	Государственн ый природный заповедник	Южно-Уральский	Минприроды России
	Республика Башкортостан	г. Уфа	Дендрологичес кий парк и ботанический сад	Ботанический сад- институт Уфимского научного центра РАН	РАН, Учреждение РАН Ботанический сад – институт Уфимского научного центра РАН
	Республика Башкортостан	Бурзянский район, Кугарчинский район, Мелеузовский район	Национальный парк	Башкирия	Минприроды России

Субъект

Административ

Код

31

	Петербург	Петербург	кий парк и ботанический сад	Санкт- Петербургского государственного университета	России, ФГБОУ высшего профессиональног о образования "Санкт- Петербургский государственный университет"
	г. Санкт- Петербург	г. Санкт- Петербург	Дендрологичес кий парк и ботанический сад	Ботанический сад Санкт- Петербургской государственной лесотехнической академии им.С.М.Кирова	Минобрнауки России, ФГБОУ высшего профессионального о образования "Санкт- Петербургский государственный лесотехнический университет имени С.М. Кирова"
79	Еврейская автономная область	Биробиджанский , Облученский, Смидовичский	Государственн ый природный заповедник	Бастак	Минприроды России
83	Ненецкий автономный округ	Заполярный	Государственн ый природный заповедник	Ненецкий	Минприроды России
	Ненецкий автономный округ	Заполярный	Государственн ый природный заказник	Ненецкий	Минприроды России
86	Ханты- Мансийский автономный округ - Югра	Кондинский, Ханты- Мансийский	Государственн ый природный заказник	Васпухольский	Минприроды России
	Ханты- Мансийский автономный округ - Югра	Кондинский, Советский	Государственн ый природный заказник	Верхне- Кондинский	Минприроды России
	Ханты- Мансийский автономный округ - Югра	Ханты- Мансийский	Государственн ый природный заказник	Елизаровский	Минприроды России
	Ханты- Мансийский автономный округ - Югра	Березовский, Советский	Государственн ый природный заповедник	Малая Сосьва	Минприроды России
	Ханты- Мансийский автономный округ - Югра	Сургутский	Государственн ый природный заповедник	Юганский	Минприроды России

Инв. № подл.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Российская Федерация Ханты-Мансийский автономный округ - Югра

(Тюменская область)

автономное учреждение Ханты-Мансийского автономного округа - Югры «Научно-аналитический центр рационального недропользования им. В.И. Шпильмана»

ИНН 8601002737, КПП 860101001 628007 г. Ханты-Мансийск ул. Студенческая, 2 телефон/факс (3467) 35-33-02, 32-62-91 E-mail: info@nacrn.hmao.ru

625026 г. Тюмень ул. Малыгина 75, а/я 286 телефон/факс(3452) 40-47-10, 40-01-91 E-mail: crru@crru.ru

12/01-Иех-5301 11.09.2023 Генеральному директору ООО «ТюменьГеоКом» Е.Н. Аксенову

На исх. № 099-23 от 08.09.2023

На Ваш запрос № 099-23 от 08.09.2023 в адрес АУ «Научноаналитический центр рационального недропользования им. В.И. Шпильмана» по состоянию на 01.09.2023 сообщаем следующее.

1. В части предоставления сведений о наличии (отсутствии) подземных источников водоснабжения:

В ответ на Ваш запрос АУ «Научно-аналитический центр рационального недропользования им. В.И. Шпильмана» направляет запрашиваемую информацию по состоянию на 01.09.2023 г.

В границах участков изысканий по объектам:

«Обустройство Верхнесалымского месторождения. Нефтегазосборный трубопровод. Участок Куст скважин № 111 — Узел УН 181»;

«Обустройство Верхнесалымского месторождения. Куст скважин N_2 111»,

расположенных в Нефтеюганском районе ХМАО-Югры, действующих и приостановленных лицензий на пользование недрами с целью геологического изучения, разведки и добычи подземных вод, используемых для целей питьевого и хозяйственно-бытового водоснабжения по участкам недр местного значения, не зарегистрировано.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

2. В части предоставления сведений о наличии (отсутствии) зон санитарной охраны подземных источников водоснабжения:

В пределах участков изысканий установленные границы зон санитарной охраны подземных источников питьевого и хозяйственно-бытового водоснабжения (водозаборов), отсутствуют.

Первый заместитель директора

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ П.А. Стулов

Сертификат 0087CCD1C5917157D4D48E212FD841C734 Владелец Стулов Пётр Александрович Действителен с 15.12.2022 по 09.03.2024

Исполнители:

Взам. инв. №

Подпись и дата

Инв. № подл.

п. 1 Матрёнина О.М. 353378

п. 2 Квашнина И.В. 353385

Изм. Кол.уч. Лист №док. Подп. Дата

ИНН 8601002737, КПП 860101001 628007 г. Ханты-Мансийск

ул. Студенческая, 2 телефон/факс (3467) 35-33-02, 32-62-91

E-mail: info@nacrn.hmao.ru

625026 г. Тюмень ул. Малыгина 75, а/я 286 телефон/факс (3452) 40-47-10, 40-01-91

E-mail: crru@crru.ru

12/01-Исх-5325 11.09.2023 Генеральному директору ООО «ТюменьГеоКом» Е. Н. Аксенову

на Исх. № 099-23 от 08.09.2023

На Ваш запрос № 099-23 от 08.09.2023 сообщаем следующее:

В границах выполнения инженерных изысканий по объектам:

-«Обустройство Верхнесалымского месторождения. Коридор коммуникаций на Куст скважин №111»;

-«Обустройство Верхнесалымского месторождения. Нефтегазосборный трубопровод. Участок Куст скважин №111 — Узел УН181»;

-«Обустройство Верхнесалымского месторождения. Куст скважин №111»

прав пользования поверхностными водными объектами для забора (изъятия) водных ресурсов для целей питьевого и хозяйственно-бытового водоснабжения в государственном водном реестре не зарегистрировано, ЗСО поверхностных источников питьевого и хозяйственно-бытового водоснабжения отсутствуют.

Первый зам. директора

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

электронной подп

Сертификат 0087CCD1C5917157D4D48E212FD841C734

Владелец Стулов Пётр Александрович Действителен с 15.12.2022 по 09.03.2024

Стулов П. А.

Исполнитель: ст. научный сотрудник Гузёмина Елена Матисовна

Телефоны: 8(3452) 62-18-87; 8(3452) 62-18-52

E-mail: guzemina@crru.ru

лнв. № подл. Подпись и дата Взам. инв. №

Изм. Кол.уч. Лист №док. Подп. Дата

Кол.уч

Изм.

Лист

№док

Серти 00870 Владе Дейст

Дата

Подп.

Российская Федерация Ханты-Мансийский автономный округ - Югра (Тюменская область)

автономное учреждение Ханты-Мансийского автономного округа - Югры «Научно-аналитический центр рационального недропользования им. В.И. Шпильмана»

ИНН 8601002737, КПП 860101001 628007 г. Ханты-Мансийск ул. Студенческая, 2 телефон/факс (3467) 35-33-02, 32-62-91 E-mail: info@nacrn.hmao.ru

625026 г. Тюмень ул. Малыгина 75, а/я 286 телефон/факс(3452) 40-47-10, 40-01-91 E-mail: crru@crru.ru

12/01-Исх-5340 12.09.2023 Генеральному директору OOO «ТюменьГеоКом» E.H. Аксенову Info@tyumengeocom.ru

kuleshovazv@tvumengeocom.ru

На исх. от 08.09.2023 № 099-23

Уважаемый Евгений Николаевич!

В ответ на Ваш запрос сообщаем, что в границах испрашиваемых участков по объектам:

- «Обустройство Верхнесалымского месторождения. Коридор коммуникаций на Куст скважин №111»;
- «Обустройство Верхнесалымского месторождения. Нефтегазосборный трубопровод. Участок Куст скважин №111 – Узел УН181»;
- «Обустройство Верхнесалымского месторождения. Куст скважин №111»

по состоянию на 01.09.2023 месторождения общераспространённых полезных ископаемых в недрах отсутствуют.

Первый заместитель директора ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

П.А. Стулов

исп. Тригубова Г.Н. тел. (3467) 35-33-56

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ДЕЛАМ НАЦИОНАЛЬНОСТЕЙ (ФАДН России)

125039, Москва, Пресненская набережная, д. 10, стр. 2

Общество с ограниченной ответственностью «Тюменьгеоком»

info@tyumengeocom.ru kuleshovazv@tyumengeocom.ru

29.09.2023	№	38250-01.1-28-03
На №		от

В Федеральном агентстве по делам национальностей обращение общества ограниченной ответственностью «Тюменьгеоком» от 08.09.2023 № 101-23 по вопросу предоставления сведений о территориях традиционного природопользования коренных малочисленных народов Севера, Сибири и Дальнего Востока Российской Федерации рассмотрено.

Сообщаем, что в границах участка проектируемых объектов:

- Обустройство Верхнесалымского месторождения. Коридор коммуникаций на Куст скважин № 111;
- Обустройство Верхнесалымского месторождения. Нефтегазосборный трубопровод. Участок Куст скважин № 111 – Узел УН181;
 - Обустройство Верхнесалымского месторождения. Куст скважин № 111»,

расположенных в Нефтеюганском районе Ханты-Мансийского автономного округа территории традиционного природопользования коренных малочисленных народов Севера, Сибири и Дальнего Востока Российской Федерации федерального значения не образованы.

В целях получения информации об образованных территориях традиционного природопользования коренных малочисленных народов Севера, Сибири и Дальнего Востока Российской Федерации регионального и местного значения рекомендуем обратиться в соответствующие органы исполнительной власти субъекта Российской Федерации и органы местного самоуправления по месту нахождения указанного участка (объекта).

Начальник Управления государственной политики в сфере межнациональных отношений

Т.Г. Цыбиков

ДОКУМЕНТ ПОДПИСАН электронной подписью

Сертификат 5CA01FD9ABD01830D66C650269762D7C Владелец Цыбиков Тимур Гомбожанович

Лействителен с 03.07.2023 по 25.09.2024

NHB. Взам. Подпись и дата Инв. № подл.

Лист №док Дата Изм. Кол.уч Подп.

Ханты-Мансийский центр по гидрометеорологии и мониторингу окружающей среды — филиал Федерального государственного бюджетного учреждения «Обь-Иртышское управление по гидрометеорологии и мониторингу окружающей среды» (Ханты-Мансийский ЦГМС — филиал ФГБУ «Обь-Иртышское УГМС»)

Тобольский тракт, д. 3, г. Ханты-Мансийск Тюменская обл., ХМАО-Югра, 628011 Тел. 8-800-250-73-79, (3812) 399-816 доб. 1305 факс: (3467) 92-92-33

факс: (3467) 92-92-33
e-mail: priemnayhanty@oimeteo.ru, priemnayhanty@oimeteo.pф
http://www.ugrameteo.ru
OКПО 09474171, ОГРН 1125543044318
ИНН/КПП 5504233490/550401001

Директору АО «Стройпроекттехнология» Я.К. Кудрявцевой

Ул. 30 лет Победы, д.103 г. Тюмень, 625051

E-mail: as.eco72@mail.ru

Справка дана для выполнения инженерно-экологических изысканий по объекту: "Разработка Западно-Салымского, Ваделыпского, Верхнесалымского месторождений" Нефтеюганского района Ханты-Мансийского автономного округа – Югры Тюменской области.

Фоновые концентрации загрязняющих веществ в атмосферном воздухе

за период 2018-2020 годы составляют:

Загрязняющий компонент	Значения фоновых концентраций, мг/м ³
Диоксид азота	0,025
Оксид азота	0,016
Оксид углерода	0,4
Диоксид серы	0,005
Взвешенные частицы	0,12

Информация действительна до 01.01.2026 г.

Фоновые концентрации установлены согласно РД 52.04.186-89 «Руководство по контролю загрязнения атмосферы» по данным Ханты-Мансийского ЦГМС — филиала ФГБУ «Обы-Иртышское УГМС».

Начальник

ausof

О.М. Волковская

Ведущий аэрохимик Герасимова Екатерина Владимировна 8 (3467) 92-92-35

Действительным является только оригинал справки; справка используется только в целях заказчика для указанного выше предприятия (производственной площадки/объекта); копирование и передача третьим лицам запрещены!

1нв. № подл.

Взам. инв.

Подпись и дата

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Приложение В Параметры выбросов загрязняющих веществ

Взам. инв. №

Подпись и дата

Инв. № подл.

Изм.

Кол.уч

Лист №док.

Подп.

Дата

В.1 Параметры выбросов загрязняющих веществ на период строительства

	11			Наименован						
Цех (номер и		ики выделе нощих веш		ие источника	Номер источни	Загряз	няющее вещество	Выбрось	а загрязняющих	веществ
наименование)	номер и наименова ние	количе ство (шт)	часов работы в год	выброса загрязняющ их веществ	ка выброса	код	наименование	г/с	мг/м3	т/год
1	3	4	5	6	8	23	24	25	26	27
1 Нефтегазосбор ный трубопровод. Участок Куст скважин №111 – Узел УН181	01 Передвиж ная ДЭС	1	0,0000	Труба (Передвижн ая ДЭС)	5501	0301	Азота диоксид (Двуокись азота; пероксид азота)	0,0915555	1880,85627	3,467520
						0304	Азот (II) оксид (Азот монооксид)	0,0148778	305,63979	0,563472
						0328	Углерод (Пигмент черный)	0,0055556	114,13061	0,216000
						0330	Сера диоксид	0,0305556	627,71425	1,134000
						0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,1000000	2054,33455	3,780000
						0703	Бенз/а/пирен	0,0000001	0,00212	0,000004
						1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,0011905	24,45685	0,043200
						2732	Керосин (Керосин прямой перегонки; керосин дезодорирован ный)	0,0285714	586,95214	1,080000
1 Нефтегазосбор ный трубопровод. Участок Куст скважин №111 – Узел УН181	02 Сварочные работы	1	0,0000	Неорг. (Сварочные работы)	6501	0123	Железа оксид	0,0202500	0,00000	0,009161
						0143	Марганец и его соединения (в пересчете на марганец (IV)	0,0003056	0,00000	0,000164
						0301	оксид) Азота диоксид (Двуокись азота; пероксид азота)	0,0086667	0,00000	0,003808
						0304	Азот (II) оксид (Азот монооксид)	0,0014083	0,00000	0,000619
						0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,0137500	0,0000	0,006336
						0342	Фториды газообразные	0,0002196	0,00000	0,000028
						0344	Фториды плохо растворимые	0,0002361	0,00000	0,000030
						2908	Пыль неорганическая : 70-20% SiO2	0,0002361	0,00000	0,000030

4	\sim
1	n
	.,

1 Нефтегазосбор	03 Автотранс	1	0,0000	Неорг. (Автотрансп	6502	0301	Азота диоксид (Двуокись	0,0413800	0,00000	0,008326
ный трубопровод. Участок Куст скважин №111 – Узел УН181	порт			орт)			азота; пероксид азота)			
						0304	Азот (II) оксид (Азот монооксид)	0,0067240	0,00000	0,001353
						0328	Углерод (Пигмент черный)	0,0051220	0,00000	0,000996
						0330	Сера диоксид	0,0048560	0,00000	0,001027
						0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,2207220	0,00000	0,041442
						2732	Керосин (Керосин прямой перегонки; керосин дезодорирован ный)	0,0333890	0,00000	0,006289
1 Нефтегазосбор ный трубопровод. Участок Куст скважин №111 – Узел УН181	04 Лакокрасо чные работы	1	0,0000	Неорг. (Лакокрасоч ные работы)	6503	0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	0,0312500	0,00000	0,000034
						2752	Уайт-спирит	0,0091667	0,00000	0,000010
						2902	Взвешенные вещества	0,0312500	0,00000	0,000034
1 Нефтегазосбор ный трубопровод. Участок Куст скважин №111 – Узел УН181	05 Перегрузка материало в	1	0,0000	Неорг. (Перегрузка материалов)	6504	2902	Взвешенные вещества	0,0007111	0,00000	0,000034
1 Нефтегазосбор ный трубопровод. Участок Куст скважин №111 – Узел УН181	06 заправка техники	1	0,0000	Неорг. (заправка техники)	6505					

Взам. инв. №	
Подпись и дата	
Инв. № подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Г.1 ПЕРИОД СТРОИТЕЛЬСТВА

ИЗА № 5501 ИВ 01 ДЭС

Расчёт произведен по программе «Дизель» (Версия 2.0), регистрационный номер: 02-17-0472

Программа основана на следующих документах:

ГОСТ Р 56163-2014 «Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов от

стационарных дизельных установок»

«Методика расчёта выделений загрязняющих веществ в атмосферу от стационарных дизельных

установок». НИИ АТМОСФЕРА, Санкт-Петербург, 2001 год.

Источник выбросов: 5501

Название: Труба ДЭС

Источник выделений: [01] ДЭС

Результаты расчётов:

Код	Название вещества	Без учёта газо	очистки.	Газооч.	С учётом газо	очистки
		г/сек	т/год	%	г/сек	т/год
0337	Углерод оксид	0,1000000	3,780000	0.0	0.1000000	3.780000
0301	Азот (IV) оксид (Азота диоксид)	0,0915555	3,467520	0.0	0.0915555	3.467520
2732	Керосин	0,0285714	1,080000	0.0	0.0285714	1.080000
0328	Углерод черный (Сажа)	0,0055556	0,216000	0.0	0.0055556	0.216000
0330	Сера диоксид (Ангидрид сернистый)	0,0305556	1,134000	0.0	0.0305556	1.134000
1325	Формальдегид	0,0011905	0,043200	0.0	0.0011905	0.043200
0703	Бенз/а/пирен (3,4- Бензпирен)	0,000000103	0,000003960	0.0	0.000000103	0.000003960
)304	Азот (II) оксид (Азота оксид)	0,0148778	0,563472	0.0	0.0148778	0.563472

Нормирование выбросов оксидов азотапроизводится в соотношении MNO2 = 0.8*MNOx и MNO =

Взам. инв. №

Подпись и дата

Инв. № подл.

Расчётные формулы

До газоочистки:

0.13*MNOx.

Максимально-разовый выброс: Mi=(1/3600)*ei*Рэ/Кi [г/с]

Валовый выброс: Wi=(1/1000)*qi*Gт/Ki [т/год]

После газоочистки:

Максимально-разовый выброс: Mi=Mi*(1-f/100) [г/с]

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Исходные данные:

Эксплуатационная мощность стационарной дизельной установки Рэ=15 [кВт]

Расход топлива стационарной дизельной установкой за год Gт=2,52 [т]

Коэффициент, зависящий от страны-производителя дизельной установки (Ki): KCO= 2; KNOx= 2.5; KSO2=1; Kocтальные= 3.5

Удельный расход топлива на эксплутационном (или номинальном) режиме работы двигателя рэ=152 [г/кВт*ч]

Высота источника выбросов Н=8 [м]

Температура отработавших газов Тог=673 [К]

Удельные выбросы на единицу полезной работы стационарной дизельной установки на режиме эксплуатационной мощности (ei) [г/кВт*ч]:

Углерод	Оксиды азот	аКеросин	Углерод	Сера диоксид	Формальдегид	Бенз/а/пирен
оксид	NOx		черный	(Ангидрид		(3,4-Бензпирен)
			(Сажа)	сернистый)		
7.2	10.3	3.6	0.7	1.1	0.15	0.000013

Удельные выбросы на один килограмм дизельного топлива при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплутационный цикл (qi) [г/кг топлива]:

						1
Углерод	Оксиды аз	отаКеросин	Углерод	Сера диоксид	Формальдегид	Бенз/а/пирен
оксид	NOx		черный	(Ангидрид		(3,4-Бензпирен)
			(Сажа)	сернистый)		
30	43	15	3	4.5	0.6	0.000055

Объёмный расход отработавших газов (Qor):

Qor=8.72*0.000001*bэ*Рэ/(1.31/(1+Тor/273))=0.350604 [м3/с]

ИЗА № 6501 Сварочные работы

Расчет произведен программой «Сварка» версия 3.0.22 от 02.10.2018. Программа зарегистрирована на: Программа зарегистрирована на: ООО "Технология" Регистрационный номер: 01-01-6293

При определении выделений (выбросов) в сварочных процессах используются расчетные методы с применением удельных показателей выделения загрязняющих веществ (на единицу массы расходуемых сварочных материалов; на длину реза; на единицу оборудования; на единицу массы расходуемых наплавочных материалов).

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

SUP-WILL-K111-003-PD-00-OBOC2.TY

Взам. инв. №

Подпись и дата

1нв. № подл.

При выполнении сварочных работ атмосферный воздух загрязняется сварочным аэрозолем, в составе которого в зависимости от вида сварки, марок электродов и флюса находятся вредные для здоровья оксиды металлов, а также газообразные соединения.

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методикой расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей). СПб, 1997» (с учетом дополнений НИИ Атмосфера 2012 г.).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Габлица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязі	няющее вещество	Максимально	Годовой в	выброс,
код	наименование	разовый выброс, г/с	т/год	
123	диЖелезо триоксид (Железа оксид)	0,02025	0,0091615	
143	Марганец и его соединения	0,0003056	0,0001644	
301	Азота диоксид (Азот (IV) оксид)	0,0086667	0,0038083	
304	Азот (II) оксид (Азота оксид)	0,0014083	0,0006188	
337	Углерод оксид	0,01375	0,0063357	
342	Фтористые газообразные соединения	0,0002196	0,0000277	
344	Фториды неорганические плохо растворимые	0,0002361	0,0000298	
2908	Пыль неорганическая, содержащая 70-20% SiO2	0,0002361	0,0000298	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Продолжение таблицы 1.1.2

		Наим	e Pa	асчетн	ый па	раметр						
₽.		нован		ракте	ристи	ка, обозн	ие	единиц	значение			
. инв.		е					а					
Взам.		Ручная дуговая сварка. Ручная дуговая сварка сталей штучными электродами. УОНИ-13/55										
			У,	дельні	ый по	казателі	ь выд	еления загрязняющего вещества "х" на				
g		единицу массы расходуемых сырья и материалов, Kxm:										
и дата				123. д	иЖел	езо трис	оксид ((Железа оксид)	г/кг	13,9		
Подпись				143. N	1арган	ец и его	соед	инения	г/кг	1,09		
Под				301. A	зота д	циоксид	(Азот	(IV) оксид)	г/кг	2,16		
				304. A	зот (II) оксид ((Азота	а оксид)	г/кг	0,351		
				337. У	′глеро	д оксид			г/кг	13,3		
				342. ⊄	торис	тые газо	ообра	зные соединения	г/кг	0,93		
№ подл.												
SUP-WILL-K111-003-PD-00-OBC								DBOC2.	ТЧ			
Инв.		Изм.	Кол.уч	. Лист	№док.	Подп.	Дата					

Продолжение таблицы 1.1.2

Наиме	Расчетный параметр		
новани е	характеристика, обозначение	единиц а	значение
<u> </u>	344. Фториды неорганические плохо растворимые	г/кг	1
	2908. Пыль неорганическая, содержащая 70-20% SiO2	г/кг	1
	Норматив образования огарков от расхода электродов, по	%	15
	Расход сварочных материалов всего за год, В"	КГ	35
	Расход сварочных материалов за период интенсивной работы, В'	КГ	1
	Время интенсивной работы, т	Ч	1
	Одновременность работы	-	нет
Газовая	резка, сварка. Газовая резка углеродистой стали.		
	Толщина разрезаемого металла, σ	ММ	5
	Удельный показатель выделения загрязняющего вещества "х" на	а	
	продолжительность реза, при толщине разрезаемого металла о	,	
	Κχσ:		
	123. диЖелезо триоксид (Железа оксид)	г/ч	72,9
	143. Марганец и его соединения	г/ч	1,1
	301. Азота диоксид (Азот (IV) оксид)	г/ч	31,2
	304. Азот (II) оксид (Азота оксид)	г/ч	5,07
	337. Углерод оксид	г/ч	49,5
	Время работы единицы оборудования за год, Т	Ч	120
	Количество единиц оборудования, n	-	1
	Одновременность работы	-	нет

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Количество загрязняющих веществ, выделяемых в воздушный бассейн при расходе сварочных материалов, определяется по формуле (1.1.1):

Mbi = B · Kxm · $(1 - no / 100) \cdot 10-3$, $\kappa r/4$ (1.1.1)

где В - расход применяемых сырья и материалов (исходя из количества израсходованных материалов и нормативного образования отходов при работе технологического оборудования), кг/ч;

Kxm - удельный показатель выделения загрязняющего вещества "x" на единицу массы расходуемых сырья и материалов, г/кг;

по - норматив образования огарков от расхода электродов, %.

Количество загрязняющих веществ, выделяемых в воздушный бассейн при газовой резке в зависимости от времени реза, определяется по формуле (1.1.2):

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв. №

Подпись и дата

ЛНВ. № подл.

где Kxoi - удельный показатель выделения загрязняющего вещества "x" на единицу оборудования (машину, агрегат и т.п.), г/ч;

n - количество единиц оборудования.

Когда технологические установки оборудованы местными отсосами, количество загрязняющих веществ, поступающих через них в атмосферу, будет равно количеству выделяющихся вредных веществ, умноженному на значение эффективности местных отсосов в долях единицы.

Валовое количество загрязняющих веществ, выделяющихся при расходе сварочных материалов, определяется по формуле (1.1.3):

$$M = B'' \cdot Kxm \cdot (1 - no / 100) \cdot \eta \cdot 10-6, \tau/год$$
 (1.1.3)

где В" - расход применяемых сырья и материалов, кг/год;

η - эффективность местных отсосов, в долях единицы.

Валовое количество загрязняющих веществ, выделяющихся при сварочных процессах от рборудования, определяется по формуле (1.1.4):

$$M = Mbi \cdot T \cdot \eta \cdot 10-3$$
, т/год (1.1.4)

где Т - фактический годовой фонд времени работы оборудования, ч;

n - эффективность местных отсосов, в долях единицы.

Максимально разовый выброс загрязняющих веществ, выделяющихся при сварочных процессах, определяется по формуле (1.1.5):

G =
$$103 \cdot \text{Mbi} \cdot \eta / 3600$$
, r/c (1.1.5)

В случае, когда рассчитывается выделение в помещение вредных веществ, поступающих от оборудования, оснащенного местными отсосами, вместо коэффициента учета эффективности местных отсосов (η), в расчетных формулах используются коэффициенты Vп (учитывающий долю пыли, поступающей в производственное помещение) и Кп (поправочный коэффициент, учитывающий гравитационное осаждение).

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Ручная дуговая сварка. Ручная дуговая сварка сталей штучными электродами. УОНИ-13/55

В = 1 / 1 = 1 кг/ч.

123. диЖелезо триоксид (Железа оксид)

Mbi = 1 · 13,9 · (1 - 15 / 100) · 10-3 = 0,011815 кг/ч;

 $M = 35 \cdot 13,9 \cdot (1 - 15 / 100) \cdot 1 \cdot 10-6 = 0,0004135$ т/год;

G = $103 \cdot 0.011815 \cdot 1 / 3600 = 0.0032819$ r/c.

143. Марганец и его соединения

Mbi = 1 · 1,09 · (1 - 15 / 100) · 10-3 = 0,0009265 кг/ч;

 $M = 35 \cdot 1,09 \cdot (1 - 15 / 100) \cdot 1 \cdot 10-6 = 0,0000324$ т/год;

G = 103 · 0,0009265 · 1 / 3600 = 0,0002574 г/с.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв. №

Подпись и дата

1нв. № подл.

```
301. Азота диоксид (Азот (IV) оксид)
Mbi = 1 \cdot 2,16 \cdot (1 - 15 / 100) \cdot 10-3 = 0,001836 \, \text{кг/ч};
M = 35 \cdot 2,16 \cdot (1 - 15 / 100) \cdot 1 \cdot 10-6 = 0,0000643 т/год;
G = 103 \cdot 0.001836 \cdot 1 / 3600 = 0.00051 r/c.
        304. Азот (II) оксид (Азота оксид)
Mbi = 1 · 0,351 · (1 - 15 / 100) · 10-3 = 0,0002984 кг/ч;
M = 35 \cdot 0,351 \cdot (1 - 15 / 100) \cdot 1 \cdot 10-6 = 0,0000104 т/год;
G = 103 \cdot 0,0002984 \cdot 1 / 3600 = 0,0000829  r/c.
        337. Углерод оксид
Mbi = 1 · 13,3 · (1 - 15 / 100) · 10-3 = 0,011305 кг/ч;
M = 35 \cdot 13,3 \cdot (1 - 15 / 100) \cdot 1 \cdot 10-6 = 0,0003957 т/год;
G = 103 \cdot 0.011305 \cdot 1 / 3600 = 0.0031403  r/c.
        342. Фтористые газообразные соединения
Mbi = 1 · 0,93 · (1 - 15 / 100) · 10-3 = 0,0007905 кг/ч;
M = 35 \cdot 0.93 \cdot (1 - 15 / 100) \cdot 1 \cdot 10 \cdot 6 = 0.0000277  т/год;
G = 103 \cdot 0,0007905 \cdot 1 / 3600 = 0,0002196  r/c.
        344. Фториды неорганические плохо растворимые
Mbi = 1 · 1 · (1 - 15 / 100) · 10-3 = 0,00085 кг/ч;
M = 35 \cdot 1 \cdot (1 - 15 / 100) \cdot 1 \cdot 10-6 = 0,0000298 т/год;
G = 103 \cdot 0,00085 \cdot 1 / 3600 = 0,0002361  r/c.
        2908. Пыль неорганическая, содержащая 70-20% SiO2
Mbi = 1 · 1 · (1 - 15 / 100) · 10-3 = 0,00085 кг/ч;
M = 35 \cdot 1 \cdot (1 - 15 / 100) \cdot 1 \cdot 10-6 = 0,0000298 т/год;
G = 103 \cdot 0.00085 \cdot 1 / 3600 = 0.0002361 r/c.
 Газовая резка, сварка. Газовая резка углеродистой стали.
        123. диЖелезо триоксид (Железа оксид)
Mbi = 72,9 · 1 · 10-3 = 0,0729 кг/ч;
M = 0.0729 \cdot 1 \cdot 120 \cdot 10-3 = 0.008748  т/год;
G = 103 · 0,0729 · 1 / 3600 = 0,02025 r/c.
        143. Марганец и его соединения
Mbi = 1,1 \cdot 1 \cdot 10-3 = 0,0011 \text{ кг/ч};
M = 0.0011 \cdot 1 \cdot 120 \cdot 10-3 = 0.000132 т/год;
G = 103 \cdot 0,0011 \cdot 1 / 3600 = 0,0003056  r/c.
        301. Азота диоксид (Азот (IV) оксид)
Mbi = 31,2 · 1 · 10-3 = 0,0312 кг/ч;
M = 0.0312 \cdot 1 \cdot 120 \cdot 10-3 = 0.003744 т/год;
G = 103 \cdot 0.0312 \cdot 1 / 3600 = 0.0086667 r/c.
        304. Азот (II) оксид (Азота оксид)
```

SUP-WILL-K111-003-PD-00-OBOC2.TY

Взам. инв.

Подпись и дата

подл.

NHB. №

Изм.

Кол.уч

Лист №док.

Подп.

Дата

```
Mbi = 5,07 · 1 · 10-3 = 0,00507 кг/ч;

M = 0,00507 · 1 · 120 · 10-3 = 0,0006084 т/год;

G = 103 · 0,00507 · 1 / 3600 = 0,0014083 г/с.

337. Углерод оксид

Mbi = 49,5 · 1 · 10-3 = 0,0495 кг/ч;

M = 0,0495 · 1 · 120 · 10-3 = 0,00594 т/год;
```

G = $103 \cdot 0.0495 \cdot 1 / 3600 = 0.01375$ r/c.

ИСТ 6502 (Автотранспорт)

Расчет произведен программой «АТП-Эколог», версия 3.10.18.0 от 24.06.2014 Copyright© 1995-2014 ФИРМА «ИНТЕГРАЛ»

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
- 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
- 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Программа зарегистрирована на: ООО "Технология"

Регистрационный номер: 01-01-6293

Расшифровка кодов топлива и графы "О/Г/К" для таблиц "Характеристики автомобилей..."

Код топлива может принимать следующие значения

- 1 Бензин АИ-93 и аналогичные по содержанию свинца;
- 2 Бензины А-92, А-76 и аналогичные по содержанию свинца;
- 3 Дизельное топливо:
- 4 Сжатый газ;
- **5 Неэтилированный бензин**;
- 6 Сжиженный нефтяной газ.

Вначения в графе "О/Г/К" имеют следующий смысл

Для легковых автомобилей - рабочий объем ДВС:

1 - до 1.2 л

SUP-WILL-K111-003-PD-00-OBOC2.T4

Взам. инв. №

Подпись и дата

1нв. № подл.

- 2 свыше 1.2 до 1.8 л
- 3 свыше 1.8 до 3.5 л
- 4 свыше 3.5 л
- 2. Для грузовых автомобилей грузоподъемность:
- 1 до 2 т
- 2 свыше 2 до 5 т
- 3 свыше 5 до 8 т
- 4 свыше 8 до 16 т
- 5 свыше 16 т

Взам. инв. №

Подпись и дата

Инв. № подл.

- 3. Для автобусов класс (габаритная длина) автобуса:
- 1 Особо малый (до 5.5 м)
- 2 Малый (6.0-7.5 м)
- 3 Средний (8.0-10.0 м)
- 4 Большой (10.5-12.0 м)
- Б Особо большой (16.5-24.0 м)

Салым, 2022 г.: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики		II	Ш	IV	V	VI	VII	VIII	IX	X	ΧI	XII
Среднемесячная температура, °С	-21	-19.4	-10.9	-1.1	6	13.4	17.4	13.6	7.9	-1.4	-12.6	-18.8
Расчетные периоды года	X	X	X	П	Т	Т	Т	Т	Т	П	X	X
Средняя минимальная температура, °С	-43	-42	-36	-23	-9	-1	4	1	-3	-18	-35	-41
Расчетные периоды года	X	X	X	X	X	П	П	П	П	X	X	X

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период	Месяцы	Всего
года		дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	0
Переходный	Апрель; Октябрь;	0
Холодный	Январь; Февраль; Март; Ноябрь; Декабрь;	118
Всего за год	Январь-Декабрь	118

ИЗА № 6502 ИВ 03 ДВС СПЕЦТЕХНИКА

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Участок №6502; Дорожно-строительная техника,

тип - 8 - Дорожная техника на неотапливаемой стоянке,

цех №0, площадка №0

Общее описание участка

Подтип - Нагрузочный режим (неполный)

Характеристики автомобилей/дорожной техники на участке

Марка	Категория	Мощность двигателя	эс
Бульдозер	Гусеничная	61-100 КВт (83-136 л.с.)	нет
Автокран	Гусеничная	161-260 КВт (220-354 л.с.)	нет
Экскаватор	Гусеничная	61-100 КВт (83-136 л.с.)	нет
Трубоукладчик	Гусеничная	61-100 КВт (83-136 л.с.)	нет

Бульдозер : количество по месяцам

Месяц	Количество	Работающих	Тсут	tдв	tнагр	txx	
	в сутки	в течение 30					
		мин.					
Январь	1.00	1	720	12	13	5	
Февраль	0	0	720	12	13	5	
Март	0	0	720	12	13	5	
Апрель	0.00	0	720	12	13	5	
Май	0.00	0	720	12	13	5	
Июнь	0.00	0	720	12	13	5	
Июль	0.00	0	720	12	13	5	
Август	0.00	0	720	12	13	5	
Сентябрь	0.00	0	720	12	13	5	
Октябрь	0.00	0	720	12	13	5	
Ноябрь	0.00	0	720	12	13	5	
Декабрь	1.00	1	720	12	13	5	

Автокран : количество по месяцам

Взам. инв. №

Подпись и дата

Инв. № подл.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Месяц	Количество	Работающих	Тсут	tдв	tнагр	txx
	в сутки	в течение 30				
		мин.				
Январь	1.00	1	720	12	13	5
Февраль	0.00	0	720	12	13	5
Март	0.00	1	720	12	13	5
Апрель	0.00	0	720	12	13	5
Май	0.00	0	720	12	13	5
Июнь	0.00	0	720	12	13	5
Июль	0.00	0	720	12	13	5
Август	0.00	0	720	12	13	5
Сентябрь	0.00	0	720	12	13	5
Октябрь	0.00	0	720	12	13	5
Ноябрь	0.00	0	720	12	13	5
Декабрь	1.00	1	720	12	13	5

Экскаватор : количество по месяцам

Месяц	Количество	Работающих	Тсут	tдв	tнагр	txx
	в сутки	в течение 30)			
		мин.				
Январь	1.00	1	720	12	13	5
Февраль	0.00	0	720	12	13	5
Март	0.00	0	720	12	13	5
Апрель	0.00	0	720	12	13	5
Май	0.00	0	720	12	13	5
Июнь	0.00	0	720	12	13	5
Июль	0.00	0	720	12	13	5
Август	0.00	0	720	12	13	5
Сентябрь	0.00	0	720	12	13	5
Октябрь	0.00	0	720	12	13	5
Ноябрь	0.00	0	720	12	13	5
Декабрь	1.00	1	720	12	13	5

Трубоукладчик : количество по месяцам

Взам. инв. №

Подпись и дата

Инв. № подл.

Месяц	Количество	Работающих	Тсут	tдв	txx

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

	в сутки	в течение 3	0			
		мин.				
Январь	1.00	1	720	12	13	5
Февраль	0.00	0	720	12	13	5
Март	0.00	0	720	12	13	5
Апрель	0.00	0	720	12	13	5
Май	0.00	0	720	12	13	5
Июнь	0.00	0	720	12	13	5
Июль	0.00	0	720	12	13	5
Август	0.00	0	720	12	13	5
Сентябрь	0.00	0	720	12	13	5
Октябрь	0.00	0	720	12	13	5
Ноябрь	0.00	0	720	12	13	5
Декабрь	1.00	1	720	12	13	5

Выбросы участка

Код	Название	Макс. выброс	Валовый выброс
в-ва	вещества	(r/c)	(т/год)
	Оксиды азота (NOx)*	0.2303789	0,1174379
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.1843031	0,09395
0304	*Азот (II) оксид (Азота оксид)	0.0299493	0,015267
0328	Углерод (Сажа)	0.0380606	0,019402
0330	Сера диоксид-Ангидрид сернистый	0.0226961	0,01157
0337	Углерод оксид	0.1791378	0,091317
0401	Углеводороды**	0.0512556	0,026128
	В том числе:		
2732	**Керосин	0.0512556	0,026128

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

NO2 - 0.80

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

SUP-WILL-K111-003-PD-00-OBOC2.TY

дата Взам. инв. №

Подпись и дата

Инв. № подл.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид

Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бульдозер	0,016248
	Автокран	0,042573
	Экскаватор	0,016248
	Трубоукладчик	0,016248
	ВСЕГО:	0,091317
Всего за год		0,091317

Максимальный выброс составляет: 0.1791378 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

Mi=(□(Ml·t'дв+1.3·Ml·t'нагр+Мхх·t'хх))·Nв·Dр·10-6, где

Nв - Среднее количество единиц техники данной группы, выезжающих в течение суток;

Dр - количество дней работы в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

Gi=(Ml·tдв+1.3·Ml·tнагр+Mxx·txx)·N'/1800 г/с,

C учетом синхронности работы: Gmax=□(Gi);

Мхх - удельный выброс техники на холостом ходу (г/мин.);

Мдв=MI - пробеговый удельный выброс (г/км);

Мдв.теп. - пробеговый удельный выброс в теплый период (г/км);

дв - движение техники без нагрузки (мин.);

нагр - движение техники с нагрузкой (мин.);

хх- холостой ход (мин.);

t'дв=(tдв·Тсут)/30- суммарное время движения без нагрузки всей техники данного типа в течение рабочего дня (мин.);

t'нагр=(tнагр·Тсут)/30- суммарное время движения с нагрузкой всей техники данного типа в течение рабочего дня (мин.);

t'xx=(txx·Tcyт)/30- суммарное время холостого хода для всей техники данного типа в течение рабочего дня (мин.);

Гсут- среднее время работы всей техники указанного типа в течение суток (мин.);

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

SUP-WILL-K111-003-PD-00-OBOC2.TY

Взам. инв. №

Подпись и дата

Инв. № подл.

N' - наибольшее количество единиц техники, работающих одновременно в течение 30 минут.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	MI	МІтеп.	Mxx	Схр	Выброс (г/с)
ие					
Бульдозер	1.570	1.290	2.400	да	
	1.570	1.290	2.400	да	0.0318739
Автокран	4.110	3.370	6.310	да	
	4.110	3.370	6.310	да	0.0835161
Экскаватор	1.570	1.290	2.400	да	
	1.570	1.290	2.400	да	0.0318739
Трубоуклад	1.570	1.290	2.400	да	
чик					
	1.570	1.290	2.400	да	0.0318739

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бульдозер	0,004599
	Автокран	0,012331
	Экскаватор	0,004599
	Трубоукладчик	0,004599
	ВСЕГО:	0,026128
Всего за год		0,026128

Максимальный выброс составляет: 0.0512556 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Наименован	ιMI	МІтеп.	Mxx	Схр Выброс (г/с)
ие				
Бульдозер	0.510	0.430	0.300	да
	0.510	0.430	0.300	да 0.0090217
Автокран	1.370	1.140	0.790	да
	1.370	1.140	0.790	да 0.0241906
Экскаватор	0.510	0.430	0.300	да
	0.510	0.430	0.300	да 0.0090217
Трубоуклад	0.510	0.430	0.300	да
чик				
	0.510	0.430	0.300	да 0.0090217

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бульдозер	0,020895
	Автокран	0,054752
	Экскаватор	0,020895
	Трубоукладчик	0,020895
	ВСЕГО:	0,117438
Всего за год		0,117438

Максимальный выброс составляет: 0.2303789 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	ıMI	МІтеп.	Mxx	Схр	Выброс (г/с)
ие					
Бульдозер	2.470	2.470	0.480	да	
	2.470	2.470	0.480	да	0.0409906
Автокран	6.470	6.470	1.270	да	
	6.470	6.470	1.270	да	0.1074072

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв. №

Подпись и дата

Инв. № подл.

Экскаватор	2.470	2.470	0.480	да	
	2.470	2.470	0.480	да	0.0409906
Трубоуклад	2.470	2.470	0.480	да	
чик					
	2.470	2.470	0.480	да	0.0409906

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Взам. инв. №

Подпись и дата

Инв. № подл.

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бульдозер	0,003441
	Автокран	0,00908
	Экскаватор	0,003441
	Трубоукладчик	0,003441
	ВСЕГО:	0,019402
Всего за год		0,019402

Максимальный выброс составляет: 0.0380606 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	ιMI	МІтеп.	Mxx	Схр	Выброс (г/с)
ие					
Бульдозер	0.410	0.270	0.060	да	
	0.410	0.270	0.060	да	0.0067494
Автокран	1.080	0.720	0.170	да	
	1.080	0.720	0.170	да	0.0178122
Экскаватор	0.410	0.270	0.060	да	
	0.410	0.270	0.060	да	0.0067494
Трубоуклад	0.410	0.270	0.060	да	
чик					
	0.410	0.270	0.060	да	0.0067494

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бульдозер	0,00202
	Автокран	0,00551
	Экскаватор	0,00202
	Трубоукладчик	0,00202
	ВСЕГО:	0,01157
Всего за год		0,01157

Максимальный выброс составляет: 0.0226961 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	ιMI	МІтеп.	Mxx	Схр Выброс (г/с)
ие				
Бульдозер	0.230	0.190	0.097	да
	0.230	0.190	0.097	да 0.0039622
Автокран	0.630	0.510	0.250	да
	0.630	0.510	0.250	да 0.0108094
Экскаватор	0.230	0.190	0.097	да
	0.230	0.190	0.097	да 0.0039622
Трубоуклад	0.230	0.190	0.097	да
чик				
	0.230	0.190	0.097	да 0.0039622

Трансформация оксидов азота

Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид)

Коэффициент трансформации - 0.8

Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

		(тонн/год)
Холодный	Бульдозер	0,0167163
	Автокран	0,0438015
	Экскаватор	0,0167163
	Трубоукладчик	0,0167163
	ВСЕГО:	0,0939504
Всего за год		0,0939504

Максимальный выброс составляет: 0.1843031 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид)

Коэффициент трансформации - 0.13

Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бульдозер	0,002716
	Автокран	0,007118
	Экскаватор	0,002716
	Трубоукладчик	0,002716
	ВСЕГО:	0,015267
Всего за год		0,015267

Максимальный выброс составляет: 0.0299493 г/с. Месяц достижения: Январь.

Распределение углеводородов

Выбрасываемое вещество - 2732 - Керосин

Валовые выбросы

Взам. инв. №

Подпись и дата

Инв. № подл.

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бульдозер	0,004599
	Автокран	0,012331
	Экскаватор	0,004599
	Трубоукладчик	0,004599

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

	ВСЕГО:	0,026128
Всего за год		0,026128

Максимальный выброс составляет: 0.0512556 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	ıМI	МІтеп.	Mxx	%%	Схр	Выброс (г/с)
ие						
Бульдозер	0.510	0.430	0.300	100.0	да	
	0.510	0.430	0.300	100.0	да	0.0090217
Автокран	1.370	1.140	0.790	100.0	да	
	1.370	1.140	0.790	100.0	да	0.0241906
Экскаватор	0.510	0.430	0.300	100.0	да	
	0.510	0.430	0.300	100.0	да	0.0090217
Трубоуклад	0.510	0.430	0.300	100.0	да	
чик						
	0.510	0.430	0.300	100.0	да	0.0090217

Участок №6502; Неорг. ИЗА (автотранспорт),

тип - 1 - Открытая или закрытая неотапливаемая стоянка,

цех №0, площадка №0, вариант №1

Общее описание участка

Взам. инв. №

Подпись и дата

Инв. № подл.

Пробег автомобиля до выезда со стоянки (км)

· от ближайшего к выезду места стоянки: 1.000

от наиболее удаленного от выезда места стоянки: 1.000

Пробег автомобиля от въезда на стоянку (км)

до ближайшего к въезду места стоянки: 1.000

- до наиболее удаленного от въезда места стоянки: 1.000

- среднее время выезда (мин.): 30.0

Характеристики автомобилей/дорожной техники на участке

Ma	арка	K	Сатего	рия	Место п	ір-ва О/Г/К	Тип	Код	ЭкоконтрНейтрал Маршру	
						SU	JP-WILL	-K111-00	03-PD-00-OBOC2.TY	
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата					

автомобиля				двиг.	топл.	оль	изатор	тный
Бортовой	Грузовой	СНГ	3	Диз.	3	нет	нет	-
автомобиль								
Самосвал	Грузовой	СНГ	4	Диз.	3	нет	нет	-

Бортовой автомобиль : количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за
		время Тср
Январь	1.00	1
Февраль	0	1
Март	0	1
Апрель	0.00	0
Май	0.00	0
Июнь	0.00	0
Июль	0.00	0
Август	0.00	0
Сентябрь	0.00	0
Октябрь	0.00	0
Ноябрь	0.00	0
Декабрь	1.00	1

Самосвал : количество по месяцам

Взам. инв. №

Подпись и дата

Инв. № подл.

Месяц	Количество в сутки	Количество выезжающих за
		время Тср
Январь	1.00	1
Февраль	0	1
Март	0	1
Апрель	0.00	0
Май	0.00	0
Июнь	0.00	0
Июль	0.00	0
Август	0.00	0
Сентябрь	0.00	0
Октябрь	0.00	0

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Ноябрь	0.00	0
Декабрь	1.00	1

Выбросы участка

Код	Название	Макс. выброс	Валовый выброс
в-ва	вещества	(r/c)	(т/год)
	Оксиды азота (NOx)*	0.0517222	0,001041
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0413778	0,000833
0304	*Азот (II) оксид (Азота оксид)	0.0067239	0,000135
0328	Углерод (Сажа)	0.0051222	9,96E-05
0330	Сера диоксид-Ангидрид сернистый	0.0048556	0,000103
0337	Углерод оксид	0.2207222	0,004144
0401	Углеводороды**	0.0333889	0,000629
	В том числе:		
2732	**Керосин	0.0333889	0,000629

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

NO2 - 0.80

Взам. инв. №

Подпись и дата

Инв. № подл.

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид

Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бортовой автомобиль	0,0014974
	Самосвал	0,0026467

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

							_
							37
	ВСЕГО:				0,00414	42	
Всего за год					0,00414		
Максимальный выброс	с составляет: 0.2207	222 г/с. Меся	ц достиже	ния: Я	нварь.		
ИЗА № 6502 ИВ 04 ДВ	С АВТОТРАНСПОР	ГА					
3десь и далее:							
Расчет валовых выбро	сов производился п	о формуле:					
Mi=□((M1+M2)·Nв·Dp·1	10-6), где						
M1 - выброс вещества	в день при выезде (г);					
M2 - выброс вещества	в день при въезде (-);					
M1=Мпр·Тпр·Кэ·КнтрП	lp+MI·L1·Кнтр+Мхх·ገ	хх·Кэ·Кнтр;					
Для маршрутных автоб	бусов при температу	ре ниже -10	град.С:				
M1=Мпр·(8+15·n)·Кэ·К	нтрПр+MI·L1·Кнтр+N	Лхх·Тхх·Кэ·К	нтр,				
где n - число периодич	еских прогревов в те	ечение суток	;				
M2=МІтеп.·L2·Кнтр+Мх	кх·Тхх·Кэ·Кнтр;						
Nв - Среднее количест	во автомобилей дан	ной группы,	выезжающ	цих в т	ечение сут	ок;	
Dp - количество дней р	работы в расчетном	периоде.					
Расчет максимально р	азовых выбросов пр	оизводился	по формул	ıe:			
Gi=(Мпр·Тпр·Кэ·КнтрП	lp+MI·L1·Кнтр+Мхх·Т	хх·Кэ·Кнтр)	N'/Тср г/с ((*),			
С учетом синхронності	и работы: Gmax=⊟(С	Si);					
Мпр - удельный выбро	с при прогреве двига	ателя (г/мин.);				
Тпр - время прогрева <i>д</i>	цвигателя (мин.);						
Кэ - коэффициент, учи	тывающий снижение	е выброса пр	и проведе	нии эк	ологическо	ого контроля	1;
КнтрПр - коэффици	ент, учитывающий	снижение	выброса	при	прогреве	двигателя	при
установленном нейтра	лизаторе;						
	~ ~ (/)						

MI - пробеговый удельный выброс (г/км);

Взам. инв. №

Подпись и дата

Инв. № подл.

Mlтеп. - пробеговый удельный выброс в теплый период (г/км);

L1=(L1б+L1д)/2=1.000 км - средний пробег при выезде со стоянки;

L2=(L2б+L2д)/2=1.000 км - средний пробег при въезде на стоянку;

Кнтр - коэффициент, учитывающий снижение выброса при установленном нейтрализаторе (пробег и холостой ход);

Мхх - удельный выброс автомобиля на холостом ходу (г/мин.);

Тхх=1 мин. - время работы двигателя на холостом ходу;

N' - наибольшее количество автомобилей, выезжающих со стоянки в течение времени Тср, карактеризующегося максимальной интенсивностью выезда;

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Тср=1800 сек. - среднее время выезда всей техники со стоянки;

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименова	нМпр	Тпр	Кэ	КнтрПр	MI	МІтеп.	Кнтр	Mxx	Схр	Выброс (г/с)
ие										
Бортовой	4.400	30.0	1.0	1.0	6.200	5.100	1.0	2.800	да	
автомобиль	,									
(д)										
	4.400	30.0	1.0	1.0	6.200	5.100	1.0	2.800	да	0.0783333
Самосвал	8.200	30.0	1.0	1.0	7.400	6.100	1.0	2.900	да	
(д)										
	8.200	30.0	1.0	1.0	7.400	6.100	1.0	2.900	да	0.1423889

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бортовой автомобиль	0,000268
	Самосвал	0,000361
	ВСЕГО:	0,000629
Всего за год		0,000629

Максимальный выброс составляет: 0.0333889 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	Мпр	Тпр	Кэ	КнтрПр	MI	МІтеп.	Кнтр	Mxx	Схр	Выброс (г/с)
ие										

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв. №

Подпись и дата

ЛНВ. № ПОДЛ.

Бортовой	0.800	30.0	1.0	1.0	1.100	0.900	1.0	0.350	да	
автомобиль	•									
(д)										
	0.800	30.0	1.0	1.0	1.100	0.900	1.0	0.350	да	0.0141389
Самосвал (д)	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	да	
	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	да	0.0192500

Выбрасываемое вещество - Оксиды азота (NOx)

Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бортовой автомобиль	0,000333
	Самосвал	0,000708
	ВСЕГО:	0,001041
Всего за год		0,001041

Максимальный выброс составляет: 0.0517222 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	Мпр	Тпр	Кэ	КнтрПр	MI	МІтеп.	Кнтр	Mxx	Схр	Выброс (г/с)
ие										
Бортовой	0.800	30.0	1.0	1.0	3.500	3.500	1.0	0.600	да	
автомобиль										
(д)										
	0.800	30.0	1.0	1.0	3.500	3.500	1.0	0.600	да	0.0156111
Самосвал	2.000	30.0	1.0	1.0	4.000	4.000	1.0	1.000	да	
(д)										
	2.000	30.0	1.0	1.0	4.000	4.000	1.0	1.000	да	0.0361111

Выбрасываемое вещество - 0328 - Углерод (Сажа)

Валовые выбросы

Взам. инв. №

Подпись и дата

Инв. № подл.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бортовой автомобиль	0,0000432
	Самосвал	0,0000564
	ВСЕГО:	0,0000996
Всего за год		0,0000996

Максимальный выброс составляет: 0.0051222 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	Мпр	Тпр	Кэ	КнтрПр	MI	МІтеп.	Кнтр	Mxx	Схр	Выброс (г/с)
ие										
Бортовой	0.120	30.0	1.0	1.0	0.350	0.250	1.0	0.030	да	
автомобиль										
(д)										
	0.120	30.0	1.0	1.0	0.350	0.250	1.0	0.030	да	0.0022111
Самосвал	0.160	30.0	1.0	1.0	0.400	0.300	1.0	0.040	да	
(д)										
	0.160	30.0	1.0	1.0	0.400	0.300	1.0	0.040	да	0.0029111

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Взам. инв. №	
Подпись и дата	

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бортовой автомобиль	0.000459
	Самосвал	0.000568
	ВСЕГО:	0.001027
Всего за год		0.001027

Максимальный выброс составляет: 0.0048556 г/с. Месяц достижения: Январь.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименова	нМпр	Тпр	Кэ	КнтрПр	MI	МІтеп.	Кнтр	Mxx	Схр	Выброс (г/с)
ие										
Бортовой	0.108	30.0	1.0	1.0	0.560	0.450	1.0	0.090	да	
автомобиль										
(д)										
	0.108	30.0	1.0	1.0	0.560	0.450	1.0	0.090	да	0.0021611
Самосвал	0.136	30.0	1.0	1.0	0.670	0.540	1.0	0.100	да	
(д)										
	0.136	30.0	1.0	1.0	0.670	0.540	1.0	0.100	да	0.0026944

Трансформация оксидов азота

Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид)

Коэффициент трансформации - 0.8

Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бортовой автомобиль	0.002662
	Самосвал	0.005664
	ВСЕГО:	0.008326
Всего за год		0.008326

Максимальный выброс составляет: 0.0413778 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид)

Коэффициент трансформации - 0.13

Валовые выбросы

Взам. инв. №

Подпись и дата

Инв. № подл.

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бортовой автомобиль	0.000433

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

	Самосвал	0.000920
	ВСЕГО:	0.001353
Всего за год		0.001353

Максимальный выброс составляет: 0.0067239 г/с. Месяц достижения: Январь.

Распределение углеводородов

Выбрасываемое вещество - 2732 - Керосин

Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Холодный	Бортовой автомобиль	0.002679
	Самосвал	0.003611
	ВСЕГО:	0.006289
Всего за год		0.006289

Максимальный выброс составляет: 0.0333889 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	Мпр	Тпр	Кэ	КнтрП	MI	МІтеп.	Кнтр	Mxx	%%	Схр	Выброс (г/с)
ие				р							
Бортовой	0.800	30.0	1.0	1.0	1.100	0.900	1.0	0.350	100.0	да	
автомобиль											
(д)											
	0.800	30.0	1.0	1.0	1.100	0.900	1.0	0.350	100.0	да	0.0141389
Самосвал	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	100.0	да	
(д)											
	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	100.0	да	0.0192500

Суммарные выбросы по предприятию

Взам. инв. №

Подпись и дата

Инв. № подл.

Код	Название	Валовый выброс
II.		<u>.</u>

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

в-ва	вещества	(т/год)
0301	Азота диоксид (Азот (IV) оксид)	0.947830
0304	Азот (II) оксид (Азота оксид)	0.154022
0328	Углерод (Сажа)	0.195013
0330	Сера диоксид-Ангидрид сернистый	0.116722
0337	Углерод оксид	0.954614
0401	Углеводороды	0.267570

Расшифровка суммарного выброса углеводородов (код 0401)

Код	Название	Валовый выброс
в-ва	вещества	(т/год)
2732	Керосин	0.267570

ИЗА № 6503 ИВ 05 Лакокрасочные работы

Расчет произведен программой «Лакокраска» версия 3.0.13 от 16.09.2016. Программа зарегистрирована на: ООО "Технология" Регистрационный номер: 01-01-6293.

Название источника выбросов: №6003 Неорг. ИЗА (лакокрасочные работы)

Тип источника выбросов: Неорганизованный источник (местные отсосы отсутствуют)

Результаты расчетов

Взам. инв. №

Подпись и дата

Инв. № подл.

Код	Название	Без учета оч	истки	С учетом оч	истки
		г/с	т/год	г/с	т/год
0616	Диметилбензол (Ксилол) (смесь	0,0312500		0,0312500	
	изомеров о-, м-, п-)		0,0000338		0,0000338
2902	Взвешенные вещества	0,0091667	0,0000099	0,0091667	0,0000099
2752	Уайт-спирит	0,0312500	0,0000338	0,0312500	0,0000338

Результаты расчетов по операциям

Название	Син.	Код	Название загр. в-ва	Без учета о	чистки	С учетом оч	истки
источника		загр.					
		в-ва					
				г/с	т/год	г/с	т/год
Эмаль	+		Диметилбензол (Ксилол) (смесь	0.0312500		0.0312500	
			изомеров о-, м-, п-)		0,0000338		0,0000338
		2752	Уайт-спирит	0.0312500	0,0000338	0.0312500	0,0000338
		2902	Взвешенные	0.0091667	0,0000099	0.0091667	0,0000099

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Код Название вещества Без учета очистки Очистка (□1) С учетом очистки п/с т/год % г/с т/год п/с т/год % г/с т/год п/с т/год % г/с т/год п/с т/год п/с т/год % г/с т/год п/с т/с т/год п/с т/с т/год п/с т/с т/с т/с т/с т/с т/с т/с т/с т/с т			Ве	ещества				
Операция: Эмаль Результаты расчетов ООД Название вещества Без учета очистки Очистка (□1) С учетом очистки				<u>. </u>			<u> </u>	
Результаты расчетов Код Название вещества Без учета очистки Очистка (□1) С учетом очистки Г/с Т/год % Г/с Т/год Вей Р/с Т/год № Г/с Т/год Вей Р/с Т/го	1схо,	дные данные по	операциям	1:				
т/с	Опер	ация: Эмаль						
7/с т/год % 7/с т/год 9% 7/с т/год 9% 7/с т/год 96-16 Диметилбензол (Ксилол) 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.0312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.000 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.00 0.00312500 0.000338 0.000 0.00312500 0.000338 0.000 0.00312500 0.000338 0.000312500 0.000338 0.000 0.00312500 0.000338 0.000332 0.000332 0.000332 0.000332 0.0003	Резул	тьтаты расчето	3					
2616 Диметилбензол (Ксилол) 0.0312500 0.000338 0.00 0.0312500 0.000338 (смесь изомеров о-, м-, п-) 0.0312500 0.000338 0.00 0.0312500 0.000338 22752 Уайт-спирит 0.0312500 0.000338 0.00 0.0312500 0.000338 22902 Взвешенные вещества 0.0091667 0.000099 0.00 0.0091667 0.000099 2 0.00 0.00099 2 0.00 0.00099 2 0.00 0.00	(од	Название веще	ства	Без учета о	чистки	Очистка	(□1) С учетом оч	нистки
(смесь изомеров о-, м-, п-) 2752 Уайт-спирит 0.0312500 0.000338 0.00 0.0312500 0.000398 Расчетные формулы Расчет выброса летучей части: Максимальный выброс (ММ) ММ= Мо + Мос (4.9 [1]) Максимальный выброс для операций окраски (Мо) Мо=Ро·□'р·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций окраски (Мос) Мо=Ро·□'р·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мог=Мо·Т·3600·10-6 (4.15, 4.16 [1]) Валовый выброс аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'а·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа) Моа=Ро·□'а·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:				г/с	т/год	%	г/с	т/год
2752 Уайт-спирит 0.0312500 0.000338 0.00 0.0312500 0.000338 2902 Взвешенные вещества 0.0091667 0.000099 0.00 0.0091667 0.000099 Расчетные формулы Расчет выброса летучей части: Максимальный выброс (ММ) ММ= Мо + Мос (4.9 [1]) Максимальный выброс для операций окраски (Мо) Мо=Ро·□'р·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций сушки (Мос) Мос=Ро·□'р·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мог=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'а·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа) Моа=Ро·□'а·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа) Моа=Ро·□'а·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	0616	Диметилбензол	і (Ксилол)	0.0312500	0.000338	0.00	0.0312500	0.000338
2902 Взвешенные вещества 0.0091667 0.000099 0.00 0.0091667 0.000099 Расчетные формулы Расчет выброса летучей части: Максимальный выброс (ММ) ММ= Мо + Мос (4.9 [1]) Максимальный выброс для операций окраски (Мо) Мо=Ро-□'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций сушки (Мос) Мос=Рс-□'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мог=Мо·Т·3600·10-6 (4.15, 4.16 [1]) Валовый выброс для операций сушки (Мог) Мог=Мо·Т·3 (100-fp)·(1-□1)·Кгр. Ко/10-ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро-□'a·(100-fp)·(1-□1)·Кгр. Ко/10-ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:		(смесь изомерс	в о-, м-, п-)					
Расчетные формулы Расчет выброса летучей части: Максимальный выброс (ММ) ММ= Мо + Мос (4.9 [1]) Максимальный выброс для операций окраски (Мо) Мо=Ро·□'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций сушки (Мос) Мос=Ро·□'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мог=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	2752	Уайт-спирит		0.0312500	0.000338	0.00	0.0312500	0.000338
Расчет выброса летучей части: Максимальный выброс (ММ) ММ= Мо + Мос (4.9 [1]) Максимальный выброс для операций окраски (Мо) Мо=Ро- □/p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций сушки (Мос) Мос=Рс- □/p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо-Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мог=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро- □/a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	2902	Взвешенные ве	ещества	0.0091667	0.000099	0.00	0.0091667	0.000099
Максимальный выброс (ММ) ММ= Мо + Мос (4.9 [1]) Максимальный выброс для операций окраски (Мо) Мо=Ро- □'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций сушки (Мос) Мос=Рс· □'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мог=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (пибо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	² асч	- етные формуль			1	1	l	ı
ММ= Мо + Мос (4.9 [1]) Максимальный выброс для операций окраски (Мо) Мо=Ро- □'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций сушки (Мос) Мос=Рс- □'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мсг=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховод менее 2 м (пибо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	^р асч	ет выброса лету	чей части:					
Максимальный выброс для операций окраски (Мо) Мо=Ро·□'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций сушки (Мос) Мос=Рс·□"p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мсг=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр. Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	Иакс	имальный выбр	oc (MM)					
Мо=Ро- □'p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.5, 4.6 [1]) Максимальный выброс для операций сушки (Мос) Мос=Рс· □''p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо· Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мог=Мос· Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Ми=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро· □'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа· Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	√M=	Mo + Moc (4.9 [1])					
Максимальный выброс для операций сушки (Мос) Мос=Рс·□"p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Заловый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Заловый выброс для операций сушки (Мог) Мсг=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Заловый выброс (Мг) Мсг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Заловый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Мсходные данные Используемый лакокрасочный материал: Заид Марка Марка	Иакс	имальный выбр	ос для опер	раций окрасі	ки (Мо)			
Мос=Рс: □"p·fp·(1-□1)·□i/1000·ti/1200/3600 (4.7, 4.8 [1]) Валовый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мсг=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Мсходные данные Используемый лакокрасочный материал:	√lo=F	Po·□'p·fp·(1-□1)·	□i/1000·ti/1	200/3600 (4.	5, 4.6 [1])			
Заловый выброс для операций окраски (Мог) Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Заловый выброс для операций сушки (Мог) Мсг=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Заловый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Заловый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Мсходные данные Используемый лакокрасочный материал: Зид Марка fp%	Иакс	имальный выбр	ос для опер	раций сушки	(Moc)			
Мог=Мо·Т·3600·10-6 (4.13, 4.14 [1]) Валовый выброс для операций сушки (Мог) Мог=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка fp%	Moc=	Pc·□"p·fp·(1-□1)·□i/1000·ti/	1200/3600 (4	4.7, 4.8 [1])			
Валовый выброс для операций сушки (Мог) Мсг=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка fp%	Зало	вый выброс для	і операций (окраски (Мо	г)			
Мсг=Мос·Тс·3600·10-6 (4.15, 4.16 [1]) Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Мсходные данные Используемый лакокрасочный материал:	Иог=	Mo·T·3600·10-6	(4.13, 4.14	[1])				
Валовый выброс (Мг) Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Мсходные данные Используемый лакокрасочный материал: Вид Марка Марка	Зало	вый выброс для	і операций	сушки (Мог)				
Мг=Мог+Мсг (4.17 [1]) Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	Исг=	Moc·Tc·3600·10	-6 (4.15, 4.1	6 [1])				
Расчет выброса аэрозоля: Максимальный выброс аэрозоля (Моа) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка Марка Марка	Зало	вый выброс (Мг)					
Максимальный выброс аэрозоля (Moa) Моа=Ро·□'a·(100-fp)·(1-□1)·Кгр.·Ко/10·ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Moa,r) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал:	ΛI=IV	1ог+Мсг (4.17 [1])					
Моа=Ро⋅□'a⋅(100-fp)⋅(1-□1)⋅Кгр.⋅Ко/10⋅ti/1200/3600 (4.3, 4.4 [1]) Валовый выброс аэрозоля (Моа,г) Моа,г=Моа⋅Т⋅3600⋅10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка fp%	Расч	ет выброса аэрс	золя:					
Валовый выброс аэрозоля (Моа,г) Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка	Иакс	имальный выбр	ос аэрозол	ศ (Moa)				
Моа,г=Моа·Т·3600·10-6 (4.11, 4.12 [1]) При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка fp%	√loa=	:Po·□'a·(100-fp)·	(1-□1)·Кгр.	Ko/10·ti/120	0/3600 (4.3, 4	1.4 [1])		
При расчете валового выброса двадцатиминутное осреднение не учитывается Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка Марка	Зало	вый выброс аэр	озоля (Моа	,г)				
Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта Ко = г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка fp%	Иоа,ı	=Moa·T·3600·1	0-6 (4.11, 4.	12 [1])				
г.к. длина воздуховода менее 2 м (либо воздуховод отсутствует) Исходные данные Используемый лакокрасочный материал: Вид Марка fp%	Три р	расчете валовог	о выброса ,	двадцатими	нутное осред	днение не уч	нитывается	
Исходные данные Используемый лакокрасочный материал: Вид Марка fp%	(оэф	фициент оседа	ния аэрозо	пя краски в	зависимости	и от длины	газовоздушного	тракта Ко =
Используемый лакокрасочный материал: Вид Марка fp%	г.к. д.	лина воздухово	да менее 2	м (либо воз	духовод отсу	тствует)		
Вид Марка fp%	1cxo,	дные данные						
	1спо.	льзуемый лакок	расочный м	иатериал:				
Эмаль ПФ-115 45.000	Вид			M	арка			fp%
	Эмал	lb		П	Ф-115			45.000

Взам. инв. №

Подпись и дата

Инв. № подл.

Расчет производился с учетом двадцатиминутного осреднения.

Масса ЛКМ, расходуемых на выполнение окрасочных работ (Ро), кг/ч: 0.5

Масса покрытия ЛКМ, высушиваемого за 1 час (Рс), кг/ч: 0.5

Способ окраски:

Способ окраски	Доля аэрозоля	приПары	растворителя	(%,	мас.	ОТ	общего
	окраске	содеря	кания раствори	геля в	краск	e)	
	при окраске (□а),	% при окр	оаске (□'р), %	при с	ушке	(□"p), %
Пневматический	30.000	25.000		75.00	0		

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц (Кгр.): 0.4

Операция производилась полностью.

Общая продолжительность операций сушки за год (Тс), ч: 3

Общая продолжительность операций нанесения ЛКМ за год (Т), ч: 3

Содержание компонентов в летучей части ЛМК

Код	Название вещества	Содержание компонента в летучей
		части (□i), %
0616	Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)	50.000
2752	Уайт-спирит	50.000

Программа основана на методических документах:

«Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении пакокрасочных материалов (по величинам удельных выделений)», НИИ Атмосфера, Санкт-Петербург, 2015

Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016

Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2

ИЗА № 6504 ИВ 06 ПЕРЕГРУЗКА МАТЕРИАЛОВ

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2005.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон (K4 = 1). Высота падения материала при пересыпке составляет 0,5 м (В = 0,4). Залповый сброс при разгрузке автосамосвала осуществляется при сбросе материала весом до 10 т (К9 = 0,2). Расчетные скорости ветра, м/с: 1 (K3 = 1). Средняя годовая скорость ветра 2,9 м/с (K3 = 1,2).

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

SUP-WILL-K111-003-PD-00-OBOC2.T4

Взам. инв. №

Подпись и дата

1нв. № подл.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязн	яющее вещество	Максимально	Годовой	выброс,
код	наименование	разовый выброс, г/с	т/год	
2902	Взвешенные вещества	0,0007111	0,0000345	

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Одновр			
Материал	Параметры	еменно			
		СТЬ			
Песок	Количество перерабатываемого материала: Gч = 1 т/час; Gгод :	= +			
	1815 т/год. Весовая доля пылевой фракции в материале: К1 = 0,05.				
	Доля пыли, переходящая в аэрозоль: К2 = 0,03. Песок влажностью				
	более 3% (К5 = 0). Размер куска 3-1 мм (К7 = 0,8).				
Торф	Количество перерабатываемого материала: Gч = 1 т/час; Gгод =	+			
	112,5 т/год. Весовая доля пылевой фракции в материале: К1 =	=			
	0,04. Доля пыли, переходящая в аэрозоль: К2 = 0,01. Влажност				
	до 10% (К5 = 0,1). Размер куска 3-1 мм (К7 = 0,8).				

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.1):

$$M\Gamma P = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot G4 \cdot 106 / 3600, r/c \qquad (1.1.1)$$

де К1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

- К2 доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);
- К3 коэффициент, учитывающий местные метеоусловия;
- К4 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;
- K5 коэффициент, учитывающий влажность материала;
- K7 коэффициент, учитывающий крупность материала;
- К8 поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств К8 = 1;
- К9 поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;
- В коэффициент, учитывающий высоту пересыпки;
- Gч суммарное количество перерабатываемого материала в час, т/час.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле (1.1.2):

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

SUP-WILL-K111-003-PD-00-OBOC2.TY

Взам. инв. №

Подпись и дата

з. № подл.

 $\Pi\Gamma P = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot Grod, \tau/rod \qquad (1.1.2)$

де Gгод - суммарное количество перерабатываемого материала в течение года, т/год.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Песок

M29071 м/c = $0.05 \cdot 0.03 \cdot 1 \cdot 1 \cdot 0 \cdot 0.8 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1 \cdot 106 / 3600 = 0$ г/c; П2907 = $0.05 \cdot 0.03 \cdot 1.2 \cdot 1 \cdot 0 \cdot 0.8 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 6050 = 0$ т/год.

Торф

Взам. инв.

Подпись и дата

1нв. № подл.

M29021 m/c = $0.04 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.1 \cdot 0.8 \cdot 1 \cdot 0.2 \cdot 0.4 \cdot 1 \cdot 106 / 3600 = 0.0007111 r/c;$

 Π 2902 = 0,04 · 0,01 · 1,2 · 1 · 0,1 · 0,8 · 1 · 0,2 · 0,4 · 112,5 = 0,00003456 т/год.

Расчет массы выбросов паров дизельного топлива в атмосферу при заправке баков автотранспорта и дорожной техники

Источник выбросов №6505

Источниками загрязнения атмосферного воздуха являются дыхательные клапаны резервуаров в процессе хранения (малое дыхание) и слива (большое дыхание) топлива, топливные баки автомобилей в процессе их заправки, места испарения топлива при случайных проливах. Климатическая зона – 1.

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров». Новополоцк, 1997 (с учетом дополнений НИИ Атмосфера 1999, 2005, 2010 г.г.).

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязн	няющее вец	цество		Максимально	Годовой	выброс,
код	наименова	ание		разовый выброс, г/с	т/год	
333	Дигидросу	льфид (Серовс	одород)	0,000022	0,000001	
2754	Алканы	C12-C19	(Углеводороды	0,0078408	0,0003665	
	предельнь	ые C12-C19)				

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

l lada a a a a a a a a a a	Объем	за	год,	Конструкция	Закачка	(слив)	в Расход	Снижение	Одно
Нефтепродукт	M ³			резервуара	резервуа	ıр	через	выброса, %	врем

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

	Qоз	Qвл		объем, м ³	время,	ТРК, л/20мин	слив	заправ ка	енно сть
Дизельное	6,04	1	наземный	6,04	1080	240	-	-	+
топливо.									
Выполняемые									
операции: закачка									
(слив) в									
резервуар,									
заправка машин,									
проливы.									

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их рбоснование приведены ниже.

Годовой выброс нефтепродуктов при сливе в резервуары рассчитывается по формуле (1.1.1):

$$Gp = (Cp o3 \cdot Qo3 + Cp вл \cdot Qвл) \cdot (1 - np / 100) \cdot 10-6, т/год (1.1.1)$$

где Ср оз - концентрация паров нефтепродуктов в осенне-зимний период при заполнении резервуаров, г/м³;

Qоз - объем нефтепродуктов, закачиваемых в резервуары за осенне-зимний период, м³;

Ср вл - концентрация паров нефтепродуктов в весенне-летний период при заполнении резервуаров, г/м³;

Qвл - объем нефтепродуктов, закачиваемых в резервуары за весенне-летний период, м³;

пр - снижение выброса при заполнении резервуаров, %.

Годовой выброс нефтепродуктов при закачке в баки машин рассчитывается по формуле (1.1.2):

$$Gб = (Cб o3 \cdot Qo3 + Cб вл \cdot Qвл) \cdot (1 - nтрк / 100) \cdot 10-6, т/год (1.1.2)$$

где Сб оз - концентрация паров нефтепродуктов в осенне-зимний период при заправке баков машин, г/м³;

Сб вл - концентрация паров нефтепродуктов в весенне-летний период при заправке баков машин, г/м³;

nтрк - снижение выброса при закачке в баки машин, %.

Годовой выброс при проливах рассчитывается по формуле (1.1.3):

Gпр =
$$J \cdot (Qo3 + Qвл) \cdot 10$$
-6, т/год (1.1.3)

где J - удельные выбросы при проливах, %.

Итоговый выброс нефтепродуктов рассчитывается по формуле (1.1.4):

$$G = Gp + Gf + Gпр, т/год$$
 (1.1.4)

Разовый выброс нефтепродуктов при сливе в резервуары рассчитывается по формуле (1.1.5):

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

1нв. № подл.

```
Mp = Cmax · V · (1 - np / 100), r/c (1.1.5)
где Cmax - максимальная концентрация паров нефтепродуктов, г/м³;
V - объем закачки(слива), м³;
 - время слива, с (если меньше 1200, то принимается 1200 с), с.
       Разовый выброс нефтепродуктов при закачке в баки машин рассчитывается по формуле
(1.1.6):
       M6 = C6 \cdot V6 \cdot (1 - ntpk / 100) \cdot 10-3 / 1200, r/c (1.1.6)
где Cmax - максимальная концентрация паров нефтепродуктов, г/м³;
Vб - максимальный расход нефтепродуктов при заправке машин за 20-ти минутный интервал,
п/20 мин.
       Разовый выброс нефтепродуктов при проливах рассчитывается по формуле (1.1.7):
       Мпр = J \cdot (Qo3 + Qвл) / (365 \cdot 24 \cdot 3600), г/с
                                                           (1.1.7)
       Максимальный выброс нефтепродуктов рассчитывается по формуле (1.1.8):
       M = Mp + M6 + Mnp, r/c
                                    (1.1.8)
       При расчете выделения конкретного загрязняющего вещества в виде дополнительного
множителя в формулах учитывается массовая доля данного вещества в составе нефтепродукта.
       Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу
приведен ниже.
Дизельное топливо
Mp = 1,49 \cdot 6,04 \cdot (1 - 0 / 100) / 1200 = 0,0074997  г/с;
M6 = 1,76 \cdot 240 \cdot (1 - 0 / 100) \cdot 10 - 3 / 1200 = 0,000352 \text{ r/c};
Mnp = 50 \cdot (6.04 + 1) / (365 \cdot 24 \cdot 3600) = 0.0000112 \text{ r/c};
M = 0.0074997 + 0.000352 + 0.0000112 = 0.0078628  r/c;
Gp = (0.79 \cdot 6.04 + 1.06 \cdot 1) \cdot (1 - 0 / 100) \cdot 10-6 = 0.0000058  т/год;
\mathsf{G}\mathsf{G} = (1,31 \cdot 6,04 + 1,76 \cdot 1) \cdot (1 - 0 / 100) \cdot 10 - 6 = 0,0000097 \,\mathsf{T/год};
Gпр = 50 \cdot (6.04 + 1) \cdot 10-6 = 0.000352 т/год;
G = 0,0000058 + 0,0000097 + 0,000352 = 0,0003675 т/год.
       333 Дигидросульфид (Сероводород)
M = 0.0078628 \cdot 0.0028 = 0.000022 \, \text{r/c};
G = 0,0003675 \cdot 0,0028 = 0,000001 т/год.
       2754 Алканы С12-С19 (Углеводороды предельные С12-С19)
M = 0.0078628 \cdot 0.9972 = 0.0078408 \text{ r/c};
G = 0,0003675 \cdot 0,9972 = 0,0003665 т/год.
```

SUP-WILL-K111-003-PD-00-OBOC2.TY

Взам. инв.

Подпись и дата

Инв. № подл.

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Г.3 АВАРИЯ

Г3.1 В период строительства

Аварийные ситуации в период строительства сведены к минимуму, но есть вероятность возникновения следующих сценариев аварий: аварийные ситуации, связанные с разливом топлива - бензина (с возгоранием/без возгорания) при разрушении цистерны топливозаправщика при движении по территории объекта (заправки техники).

1. Испарение нефтепродукта

Массовая концентрация содержания веществ бензине принята в соответствии с «Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров». Новополоцк, 1997 (с учетом дополнений НИИ Атмосфера 1999, 2005, 2010 г.г.).

415	Углеводороды предельные C1-C5	67,67	%
416	Углеводороды предельные С6-С10	25,01	%
501	Пентилены (амилены - смесь изомеров)	2,50	%
602	Бензол	2,30	%
616	Ксилол	0,29	%
621	Толуол	2,17	%
627	Этилбензол	0,06	%

Источник выбросов №6001

Расчет количества углеводородов, испарившихся с поверхности разлива произведен в соответствии с «Методикой определения ущерба окружающей природной среде при авариях на магистральных нефтепроводах».

Плотность бензина — 750 кг/м³. Количество разлившегося нефтепродукта — 12 м3 или 9 т. Площадь разлива — 240,21 м² (рассчитана по формуле 1 Временного методического руководства по оценке экологического риска деятельности нефтебаз и автозаправочных станций). Расчет произведен при температуре поверхности испарения 15°С. Продолжительность испарения — до 6 часов.

При данных условиях толщина слоя составит: 9/(240,21*0,75)=0,05 м

Удельная величина выбросов углеводородов в атмосферу составит 219 г/м².

Количество испарившихся углеводородов составит: 219·240,21·0,000001=0,0052606 т.

При времени испарения t=6 часов, количество испарившихся углеводородов в секунду составит 2,4354625 г/с

Расчет валовых выбросов:

максимально разовые 2,4354625 г/сек выбросы годовые 0,0052606 т/год

таолица г.з.2	- идентификация состава в	зыоросов
Код	Состав выбросов	Конце
		BOLL

ı	код Состав выоросов		концентрация	валовые в	ыоросы
l			веществ в выбросах, %	максимальные, г/с	годовые, т/год
	415	Углеводороды предельные С1-С5	67,67	1,6480775	0,0035598
	416	Углеводороды предельные C6-C10	25,01	0,6091092	0,0013157
	501	Пентилены (амилены - смесь изомеров)	2,50	0,0608866	0,0001315
I	602	Бензол	2,30	0,0560156	0,0001210
	616	Ксилол	0,29	0,0070628	0,0000153
	621	Толуол	2,17	0,0528495	0,0001142
L	627	Этилбензол	0,06	0,0014613	0,0000032

2. Возгорание нефтепродукта

Источник выбросов №6002 Расчет произведен программой «Горение нефти», версия 1.0.0.5 от 30.04.2006

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Взам. инв.

Подпись и дата

1нв. № подл.

Copyright © 2003-2006 ФИРМА «ИНТЕГРАЛ»

Расчет выбросов загрязняющих веществ в соответствии с «Методикой расчета выбросов вредных веществ в атмосферу при свободном горении нефти и нефтепродуктов»: Самара, 1996.

Источник выбросов №6002, цех №1, площадка №1, вариант №1 Пожар разлива бензина

Таблица Г.3.3 - Идентификация состава выбросов

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
0301	Азота диоксид (Азот (IV) оксид)	153,7920504	0,020329
0304	Азот (II) оксид (Азота оксид)	24,9912082	0,003303
0317	Гидроцианид (Водород цианистый)	12,73113	0,001683
0328	Углерод (Сажа)	19,096695	0,002524
0330	Сера диоксид-Ангидрид сернистый	15,2773560	0,002019
0337	Углерод оксид	3959,38143	0,523371
1325	Формальдегид	6,365565	0,000841
1555	Этановая кислота (Уксусная к-та)	6,365565	0,000841

Расчетные формулы, исходные данные

Нефтепродукт - Бензин

Таблица Г.3.4 - Удельные выбросы вредных веществ при горении нефти и нефтепродуктов на поверхности (Kj) кг/кг

CO2	0301	0317	0328	0330	0337	1325	1555
1,000	0,0151	0,0010	0,0015	0,0012	0,3110	0,0005	0,0005

Коэффициенты трансформации оксидов азота:

NO - 0.13

 NO_2 - 0.80

Горение пропитанных нефтепродуктом инертных грунтов

Наименование грунта - Торфяной грунт

Валовый выброс загрязняющих веществ определяется по формуле:

$$M=0.6 \cdot K_i \cdot K_H \cdot P \cdot B \cdot S_r \tau / rod$$
 (ГЗ.1)

Влажность грунта - 70.00 %

 K_{H} =0.15 M^{3}/M^{3} - нефтеемкость грунта данного типа и влажности

P=0.750 т/м³ - плотность разлитого вещества

В=0.05 м - толщина пропитанного нефтепродуктом слоя почвы

 S_{r} =240,21 м 2 - средняя площадь пятна жидкости на почве

Максимально-разовый выброс загрязняющих веществ определяется по формуле:

$$G = (0.6 \cdot 10^{6} \cdot K_{j} \cdot K_{H} \cdot P \cdot B \cdot S_{r}) / (3600 \cdot T_{r}) r/c$$
 (\Gamma 3.2)

T_r=1.000 час. (1 час., 0 сек.) - время горения нефтепродукта от начала до затухания

подл.	Подпись и дата	Взам. инв. №	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Д.1 Период строительства

УПРЗА «ЭКОЛОГ» 4.70 Copyright © 1990-2022 ФИРМА «ИНТЕГРАЛ»

Программа зарегистрирована на: ООО "Технология" Регистрационный номер: 01016293

Предприятие: 4048, куст скважин 111

Город: 26, Район: 2,

Адрес предприятия:

Разработчик:

ИНН: ОКПО: Отрасль:

Величина нормативной санзоны: 0 м ВИД: 2, Существующее положение

BP: 2, №2 SUP-WLL-K111-003-PD-02-OOC (трубопро

Расчетные константы: S=999999,99

Расчет: «Расчет рассеивания по МРР-2017» (лето)

Метеорологические параметры

Расчетная температура наиболее холодного месяца, °C:	-23,6
Расчетная температура наиболее теплого месяца, °C:	24,1
Коэффициент А, зависящий от температурной стратификации атмосферы:	200
U* – скорость ветра, наблюдаемая на данной местности, повторяемость превышения которой находится в пределах 5%, м/с:	6
Плотность атмосферного воздуха, кг/м3:	1,29
Скорость звука, м/с:	331

Структура предприятия (площадки, цеха)

2 - Куст скважин №111	
1 - Нефтегазосборный трубопровод. Участок	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Параметры источников выбросов

Учет:
"%" - источник учитывается с исключением из фона;
"*" - источник учитывается без исключения из фона;
"-" - источник не учитывается и его вклад исключается из фона.
При отсутствии отметок источник не учитывается.

Типы источников:

1 - Точечный;

2 - Лимейный;

3 - Неорганизованный;

4 - Совокупность точечных источников;

5 - С зависимостью массы выброса от скорости ветра;

6 - Точечный, с зонтом или выбросом горизонтально;

7 - Совокупность точечных (зонт или выброс вбок);

8 - Автоматистраль (неорганизованный линейный);

9 - Точечный, с выбросом вбок;

10 - Свеча;

11- Неорганизованный (полигон);

Учет					Высота	Диаметр	Объем	Скорость	Плотност	Темп.	Ширина		онение	Коэф		Коорд	инаты	
при расч.	№ ист.	Наименование источника	Вар.	Тип	ист. (м)	устья (м)	ГВС (куб.м/с)	FBC (M/c)	ь ГВС, (кг/куб.м)	(°C)	источ. (м)	выбро Угол	оса, град Направл.	рел.	X1 (M)	Y1 (M)	X2 (M)	Y2 (M)
								№ пл.: 2	, № цеха: 1				100					
%	5501	Труба (Передвижная ДЭС) 1 1 8 0,10			0,12	15,28	1,29	400,00	0,00	- 6	(2)	1	140,60	230,50	0,00	0,00		
						Rufinoc			-/-> =			Лето				Зи	ма	
Код	в-ва	Наименовани	е вещ	ества			(r/c)	Выброс, (т/г) Е	Cm/Π,	дк	Xm	Un	n	Cm/ПДН	()	(m	Um
03	01	Азота диоксид (Двуокись азота; пероксид азота)				0,0915555	3,46752	0 1	0,50	6	58,51	1,1	6	0,00	C	,00	0,00	
03	04	Азот (II) оксид (Азот монооксид)				0,0148778	0,56347	2 1	0,04	l .	58,51	1,1	6	0,00	0	,00	0,00	
03	28	Углерод (Пигмент черный)				0,0055556	0,21600	0 1	0,04	L ²	58,51	1,1	6	0,00	C	,00	0,00	
03	30	Сера диоксид			0,0305556	1,13400	0 1	0,07		58,51	1,1	6	0,00	C	,00	0,00		
03	37	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)			/гарный	0,1000000	3,78000	0 1	0,02		58,51	1,1	6	0,00	C	,00	0,00	
07	03	Бенз/а/	пирен				0,0000001	0,00000	4 1	0,00	KS.	58,51	1,1	6	0,00	0	,00	0,00
13	25	Формальдегид (Муравьин метилен			, оксомета	эн,	0,0011905	0,04320	0 1	0,03		58,51	1,1	6	0,00	C	,00	0,00
27	32	Керосин (Керосин прям дезодорир			і; керосин		0,0285714	1,08000	0 1	0,03	68	58,51	1,1	6	0,00	C	,00	0,00
%	6501	Неорг. (Сварочные работы)	1	3	5	0,00			1,29		14,00	-	558	1	122,40	238,50	134,80	163,30
1/		11					Выброс,	D6 (-/-> =			Лето	**			Зи	ма	
Код	в-ва	Наименование вещества			(г/с) Выброс,		1/I) F	Cm/Π,	дк	Xm	Un	n	Ст/ПДН	()	(m	Um		
01	23	Железа	оксид				0,0202500	0,00916	2 1	0,00	ko.	28,50	0,5	0	0,00	C	,00	0,00
01	43	Марганец и его соединения (в окси		чете і	на марган	ец (IV)	0,0003056	0,00016	4 1	0,13		28,50	0,5	0	0,00	C	,00	0,00

(301	Азота диоксид (Двуокись	азота	а; перо	ксид азот	a)	0,0086667	0,00380	8 1	0,18		28,50	0,50)	0,00	(0,00	0,00
(304	Азот (II) оксид (А	Азот (II) оксид (Азот монооксид)					0,00061	9 1	0,01		28,50	0,50)	0,00	(0,00	0,00
(337		Углерода оксид (Углерод окись; углерод моноокись; угарный газ)					0,00633	6 1	0,01		28,50	0,50)	0,00	(0,00	0,00
(342	Фториды газообразные					0,0002196	0,00002	8 1	0,05		28,50	0,50)	0,00	(0,00	0,00
(344	Фториды плохо	раств	воримы	иe		0,0002361	0,00003	0 1	0,00		28,50	0,50)	0,00	(0,00	0,00
- 2	2908	Пыль неорганичес	кая: 7	0-20%	SiO2		0,0002361	0,00003	0 1	0,00		28,50	0,50)	0,00	(0,00	0,00
%	6502	Неорг. (Автотранспорт)	1	3	5	0,00			1,29		14,00		-	1	122,40	238,50	134,80	163,30
16-							Выброс,	D. 6 (-/-> F			Лето				3и	ма	
KO	д в-ва	Наименовани	е веш	цества			(r/c)	Выброс, (T/F) F	Cm/∏	цк	Xm	Um		Ст/ПДК	(Xm	Um
(301	Азота диоксид (Двуокись	азота	; перо	ксид азот	a)	0,0413800	0,00832	6 1	0,87		28,50	0,50)	0,00	(0,00	0,00
(304	Азот (II) оксид (А	зот мо	оноокс	ид)		0,0067240	0,00135	3 1	0,07		28,50	0,50)	0,00	(0,00	0,00
(328	Углерод (Пигмент черный)				0,0051220	0,00099	6 1	0,14		28,50	0,50)	0,00	(0,00	0,00	
(330	Сера диоксид				0,0048560	0,00102	7 1	0,04		28,50	0,50)	0,00	(0,00	0,00	
(337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)				0,2207220	0,04144	2 1	0,19		28,50	0,50)	0,00	(0,00	0,00	
2	732	Керосин (Керосин прямой перегонки; керосин дезодорированный)				(0,0333890	0,00628	9 1	0,12	9	28,50	0,50)	0,00	(0,00	0,00
%	6503	Неорг. (Лакокрасочные работы)	1	3	2	0,00			1,29		14,00	-	-	1	122,40	238,50	134,80	163,30
V.	д в-ва	Наименовани	0.000	LOCTRO			Выброс,	Выброс, (-/r) E		71	Лето	21X 21			34	ма	
NO	д в-ва	Travimenobani	е веш	цества			(r/c)	выорос, (1/1)	Cm/∏	цк	Xm	Um		Ст/ПДК	(Xm	Um
(616	Диметилбензол (смесь о-, м-,	п- изо	меров) (Метилт	олуол)	0,0312500	0,00003	4 1	5,58		11,40	0,50)	0,00	(0,00	0,00
2	2752	Уайт-сі	пирит				0,0091667	0,00001	0 1	0,33		11,40	0,50)	0,00	(0,00	0,00
2	2902	Взвешенные	веще	ества			0,0312500	0,00003	4 1	2,23	(11,40	0,50)	0,00		0,00	0,00
%	6504	Неорг. (Перегрузка	1	3	2	0,00			1,29		14,00	-	-	1	122,40	238,50	134,80	163,30
Vo	д в-ва	Наименовани	0 0011	IOCTRO			Выброс,	Выброс, (T/r) E	100	11	Лето	W		00 0	Зи	ма	
NO	ц ь-ва	Паименовани	е веш	чества			(r/c)	ьыорос, (in) F	Cm/ПД	дк	Xm	Um		Ст/ПДК	(Xm	Um
2	902	Взвешенные	веще	ества			0,0007111	0,00003	5 1	0,05		11,40	0,50)	0,00	(00,0	0,00

Взам. и	
Подпись и дата	
. № подл.	

HB.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Расчет проводился по веществам (группам суммации)

			Предел	ьно допус	тимая концен	трация		Фоновая	
Код	Наименование вещества		ксимальных нтраций	средне	егодовых чтраний	средне	асчет есуточных		ювая центр.
		Тип	Значение	Тип	Значение	Тип	Значение	Учет	Интерп.
0123	Железа оксид	-	2	ПДК с/с	0,040	ПДК с/с	0,040	Нет	Нет
0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	ПДК м/р	0,010	ПДК с/г	5,000E-05	ПДК с/с	0,001	Нет	Нет
0301	Азота диоксид (Двуокись азота; пероксид азота)	ПДК м/р	0,200	ПДК с/г	0,040	ПДК с/с	0,100	Да	Нет
0304	Азот (II) оксид (Азот монооксид)	ПДК м/р	0,400	ПДК с/г	0,060	ПДК с/с	-	Да	Нет
0328	Углерод (Пигмент черный)	ПДК м/р	0,150	ПДК с/г	0,025	ПДК с/с	0,050	Нет	Нет
0330	Сера диоксид	ПДК м/р	0,500	ПДК с/с	0,050	ПДК с/с	0,050	Да	Нет
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	ПДК м/р	5,000	ПДК с/г	3,000	ПДК с/с	3,000	Да	Нет
0342	Фториды газообразные	ПДК м/р	0,020	ПДК с/г	0,005	ПДК с/с	0,014	Нет	Нет
0344	Фториды плохо растворимые	ПДК м/р	0,200	ПДК с/с	0,030	ПДК с/с	0,030	Нет	Нет
0616	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	ПДК м/р	0,200	ПДК с/г	0,100	ПДК с/с	-	Нет	Нет
0703	Бенз/а/пирен	-	-	ПДК с/г	1,000E-06	ПДК с/с	1,000E-06	Нет	Нет
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	ПДК м/р	0,050	ПДК с/г	0,003	ПДК с/с	0,010	Нет	Нет
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	ОБУВ	1,200	-	.=	ПДК с/с	-	Нет	Нет
2752	Уайт-спирит	ОБУВ	1,000	-	-	ПДК с/с	-	Нет	Нет
2902	Взвешенные вещества	ПДК м/р	0,500	ПДК с/г	0,075	ПДК с/с	0,150	Да	Нет
2908	Пыль неорганическая: 70-20% SiO2	ПДК м/р	0,300	ПДК с/с	0,100	ПДК с/с	0,100	Нет	Нет
6053	Группа суммации: Фтористый водород и плохорастворимые соли фтора	Группа суммации	-	Группа суммации		Группа суммации	-	Нет	Нет
6204	Группа неполной суммации с коэффициентом "1,6": Азота диоксид, серы диоксид	Группа суммации	-	Группа суммации		Группа суммации	-	Нет	Нет
6205	Группа неполной суммации с коэффициентом "1,8": Серы диоксид и фтористый водород	Группа суммации	=	Группа суммации	-	Группа суммации	-	Нет	Нет

Инв. № подл. Подпись и дата Взам. инв. №

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Посты измерения фоновых концентраций

		Координ	іаты (м)
№ поста	Наименование	x	Y
1		0,00	0,00

V	Hamanaan aan aan aan	N	Максимальная концентрация *					
Код в-ва	Наименование вещества	Штиль	Север	Восток	Юг	Запад	Средняя концентрация *	
0301	Азота диоксид (Двуокись азота; пероксид азота)	0,025	0,025	0,025	0,025	0,025	0,000	
0304	Азот (II) оксид (Азот монооксид)	0,016	0,016	0,016	0,016	0,016	0,000	
0330	Сера диоксид	0,005	0,005	0,005	0,005	0,005	0,000	
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,400	0,400	0,400	0,400	0,400	0,000	
2902	Взвешенные вещества	0,120	0,120	0,120	0,120	0,120	0,000	

 $^{^{\}star}$ Фоновые концентрации измеряются в мг/м3 для веществ и долях приведенной ПДК для групп суммации

Перебор метеопараметров при расчете

Набор-автомат

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области

Расчетные площадки

Код			Полное с	описание пло	исание площадки					
	Тип	Координаты 1-й сторо		Координать 2-й стор		Ширина	Зона влияния (м)	Шаг	(м)	Высота (м)
		х	Y	х	Υ	(M)	(M)	По ширине	ирине По длине	
2	Полное описание	-1042,00	282,25	1358,00	282,25	1833,50	0,00	50,00	50,00	2,00

Расчетные точки

W	Координ	іаты (м)	D ()	T	V
Код	х	Υ	Высота (м)	Тип точки	РТ на промзоне
1	25,00	273,50	2,00	на границе производственной зоны	РТ на промзоне
2	215,50	273,50	2,00	на границе производственной зоны	РТ на промзоне
3	224,50	80,50	2,00	на границе производственной зоны	РТ на промзоне
4	32,00	80,50	2,00	на границе производственной зоны	РТ на промзоне

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Результаты расчета по веществам (расчетные точки)

Типы точек:

- о расчетная точка пользователя
 о расчетная точка пользователя
 точка на границе охранной зоны
 точка на границе производственной зоны
 точка на границе СЗЗ
 о на границе жилой зоны
 точка на границе застройки

- 6 точки квотирования

Вещество: 0123 Железа оксид

Assertate	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	- ž
Nº	Х(м)	Ү(м)	Высо (м)	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T POT
1	25,00	273,50	2,00	-	0,027	123	0,68	-	-	-	(#	2
4	32,00	80,50	2,00	, .	0,021	40	0,68		Œ		(-	2
2	215,50	273,50	2,00	-	0,029	232	0,68	_	1-	-	8-	2
3	224,50	80,50	2,00	-	0,022	320	0,93	-		-		2

Вещество: 0143 Марганец и его соединения (в пересчете на марганец (IV) оксид)

	Коорд	Коорд	ота 1)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	ΕŽ
Nº	Х(м)	Y(м)	Bыc.	(д. ПДК)	(мг/куб.м)	ветр	ветр ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТТ
2	215,50	273,50	2,00	0,04	4,324E-04	232	0,68	-	18	-	e=	2
1	25,00	273,50	2,00	0,04	4,074E-04	123	0,68	-	32		87=	2
3	224,50	80,50	2,00	0,03	3,351E-04	320	0,93	-	-	_	73 -	2
4	32,00	80,50	2,00	0,03	3,153E-04	40	0,68	-	-	-	-	2

Вещество: 0301 Азота диоксид (Двуокись азота; пероксид азота)

	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	= 2
Nº	Х(м)	Y(м)	Bыc (M	(д. ПДК)	(мг/куб.м)	ветр	ветр ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T P
2	215,50	273,50	2,00	0,74	0,147	238	0,97	0,03	0,005	0,13	0,025	2
1	25,00	273,50	2,00	0,62	0,124	116	0,97	0,03	0,005	0,13	0,025	2
3	224,50	80,50	2,00	0,51	0,103	326	0,97	0,03	0,005	0,13	0,025	2
4	32,00	80,50	2,00	0,51	0,101	38	1,31	0,03	0,005	0,13	0,025	2

Вещество: 0304 Азот (II) оксид (Азот монооксид)

	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	E Z
Nº	Х(м)	Ү(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр а	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	TOT
2	215,50	273,50	2,00	0,07	0,030	238	0,97	0,02	0,007	0,04	0,016	2
1	25,00	273,50	2,00	0,07	0,028	116	0,97	0,02	0,008	0,04	0,016	2
3	224,50	80,50	2,00	0,06	0,026	326	0,97	0,02	0,010	0,04	0,016	2
4	32,00	80,50	2,00	0,06	0,025	38	1,31	0,02	0,010	0,04	0,016	2

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Вещество: 0328 Углерод (Пигмент черный)

	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	= 2
Nº	Х(м)	Ү(м)	Высо (м)	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T P
2	215,50	273,50	2,00	0,07	0,011	236	0,89	-		-	1.0	2
1	25,00	273,50	2,00	0,06	0,010	118	0,89	-	1=	-	8-	2
3	224,50	80,50	2,00	0,05	0,008	324	0,89	-	-	-	-	2
4	32,00	80,50	2,00	0,05	0,008	39	0,89	-	-	-	-	2

Вещество: 0330 Сера диоксид

	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	= 2
Nº	Х(м)	Y(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТОТ
2	215,50	273,50	2,00	0,07	0,035	239	1,19	2,00E-	0,001	0,01	0,005	2
1	25,00	273,50	2,00	0,06	0,029	112	1,19	2,00E-	0,001	0,01	0,005	2
3	224,50	80,50	2,00	0,05	0,023	329	1,56	2,00E-	0,001	0,01	0,005	2
4	32,00	80,50	2,00	0,04	0,022	36	1,56	2,00E-	0,001	0,01	0,005	2

Вещество: 0337 Углерода оксид (Углерод окись; углерод моноокись; угарный газ)

	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	L Y KM
Nº	Х(м)	Ү(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	TOT
2	215,50	273,50	2,00	0,13	0,636	234	0,79	0,05	0,243	0,08	0,400	2
1	25,00	273,50	2,00	0,12	0,614	121	0,79	0,05	0,257	0,08	0,400	2
3	224,50	80,50	2,00	0,12	0,579	322	0,79	0,06	0,281	0,08	0,400	2
4	32,00	80,50	2,00	0,11	0,572	39	0,79	0,06	0,285	0,08	0,400	2

Вещество: 0342 Фториды газообразные

	Коорд	Коорд	Коорд 5 Концентр Ко		Концентр.	Напр	Скор		Фон	Фон	до исключения	- 2
Nº	Х(м)	Ү(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T POT
2	215,50	273,50	2,00	0,02	3,107E-04	232	0,68	-		-	-	2
1	25,00	273,50	2,00	0,01	2,927E-04	123	0,68	-	1.0	-	-	2
3	224,50	80,50	2,00	0,01	2,408E-04	320	0,93	_	52	_	8=	2
4	32,00	80,50	2,00	0,01	2,266E-04	40	0,68	-		-	-	2

Вещество: 0344 Фториды плохо растворимые

	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	_ S	
Nº	Х(м)	Ү(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T	ГΙ.
2	215,50	273,50	2,00	1,67E-03	3,340E-04	232	0,68	-	8.5	-	-	2	2
1	25,00	273,50	2,00	1,57E-03	3,147E-04	123	0,68	-	2.00	-	9 -	2	2
3	224,50	80,50	2,00	1,29E-03	2,589E-04	320	0,93	-	1.0	-	S=	2	2
4	32,00	80,50	2,00	1,22E-03	2,436E-04	40	0,68	-	:=	-		2	2

Взам. инв. №

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

	Коорд	Коорд	ота 1)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	= 3
Nº	Х(м)	Ү(м)	Bbic (M	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T P
2	215,50	273,50	2,00	0,45	0,090	233	0,93	-		-	χ-	2
1	25,00	273,50	2,00	0,41	0,082	123	0,93	-	\ <u>-</u>	-	-	2
3	224,50	80,50	2,00	0,33	0,066	320	2,36	-	-	-	-	2
4	32,00	80,50	2,00	0,30	0,059	40	1,27	-	-	-	-	2

Вещество: 0703 Бенз/а/пирен

	Коорд	Коорд	ота	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	= 2
Nº	Х(м)	Ү(м)	Bыco.	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T P
1	25,00	273,50	2,00	-	8,207E-08	110	1,52	-	0 .	-	\-	2
4	32,00	80,50	2,00	-	5,846E-08	36	1,52			-	1.5	2
2	215,50	273,50	2,00	-	9,927E-08	240	1,16	-	9.=	-	3=	2
3	224,50	80,50	2,00	-	6,298E-08	331	1,52	-	3.4	-		2

Вещество: 1325 Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)

2000000	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор	-	Фон	Фон	до исключения	- <u>2</u>
Nº	Х(м)	Ү(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
2	215,50	273,50	2,00	0,02	0,001	240	1,16	-	72	-	2-	2
1	25,00	273,50	2,00	0,02	9,486E-04	110	1,52	-	£	-	-	2
3	224,50	80,50	2,00	0,01	7,279E-04	331	1,52	-	a r.	-	y -	2
4	32,00	80,50	2,00	0,01	6,757E-04	36	1,52	-		-	-	2

Вещество: 2732 Керосин (Керосин прямой перегонки; керосин дезодорированный)

	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	- 2
Nº	Х(м)	Ү(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T POT
2	215,50	273,50	2,00	0,06	0,067	236	0,86	-	-	-	-	2
1	25,00	273,50	2,00	0,05	0,058	119	0,86	-	-	-	-	2
3	224,50	80,50	2,00	0,04	0,049	323	0,86	_	s=	_	8-	2
4	32,00	80,50	2,00	0,04	0,048	39	0,86	-	-	-	-	2

Вещество: 2752 Уайт-спирит

	Коорд	Коорд	ота	Концентр	Концентр.	Напр	Скор		Фон	Фон	до исключения	- ž
Nº	Х(м)	Ү(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТОТ
2	215,50	273,50	2,00	0,03	0,026	233	0,93	-	87	-	-	2
1	25,00	273,50	2,00	0,02	0,024	123	0,93	-	2.0	-	\(\frac{1}{2}\)	2
3	224,50	80,50	2,00	0,02	0,019	320	2,36	-	1.0	-		2
4	32,00	80,50	2,00	0,02	0,017	40	1,27	-	:=	-		2

Взам. инв. №

Вещество: 2902 Взвешенные вещества

	Коорд	орд Коорд 5 Концентр Концентр. Напр Ск		Скор		Фон	Фон до исключения					
Nº	Х(м)	Y(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Тип
2	215,50	273,50	2,00	0,35	0,175	233	0,93	0,17	0,083	0,24	0,120	2
1	25,00	273,50	2,00	0,34	0,171	123	0,93	0,17	0,086	0,24	0,120	2
3	224,50	80,50	2,00	0,32	0,160	320	2,36	0,19	0,093	0,24	0,120	2
4	32,00	80,50	2,00	0,31	0,156	40	1,27	0,19	0,096	0,24	0,120	2

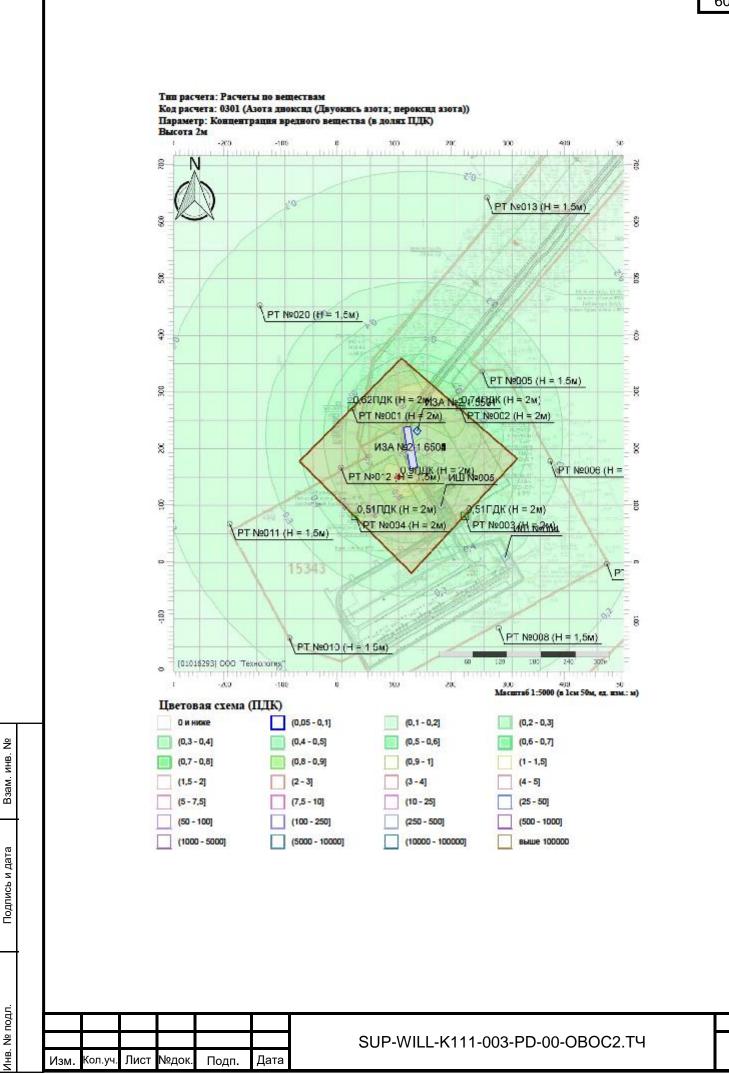
Вещество: 2908 Пыль неорганическая: 70-20% SiO2

	Коорд	Коорд	ота)	Концентр	Концентр.	Напр (кор Фон		Фон до исключения		E	ž
Nº	Х(м)	Y(м)	Высо (м)	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	Ţ	T04
2	215,50	273,50	2,00	1,11E-03	3,340E-04	232	0,68	-	0 .5	5 .5	:-		2
1	25,00	273,50	2,00	1,05E-03	3,147E-04	123	0,68			-	1-		2
3	224,50	80,50	2,00	8,63E-04	2,589E-04	320	0,93	-	9 	-	-		2
4	32,00	80,50	2,00	8,12E-04	2,436E-04	40	0,68	-	78	-			2

Вещество: 6053 Фтористый водород и плохорастворимые соли фтора

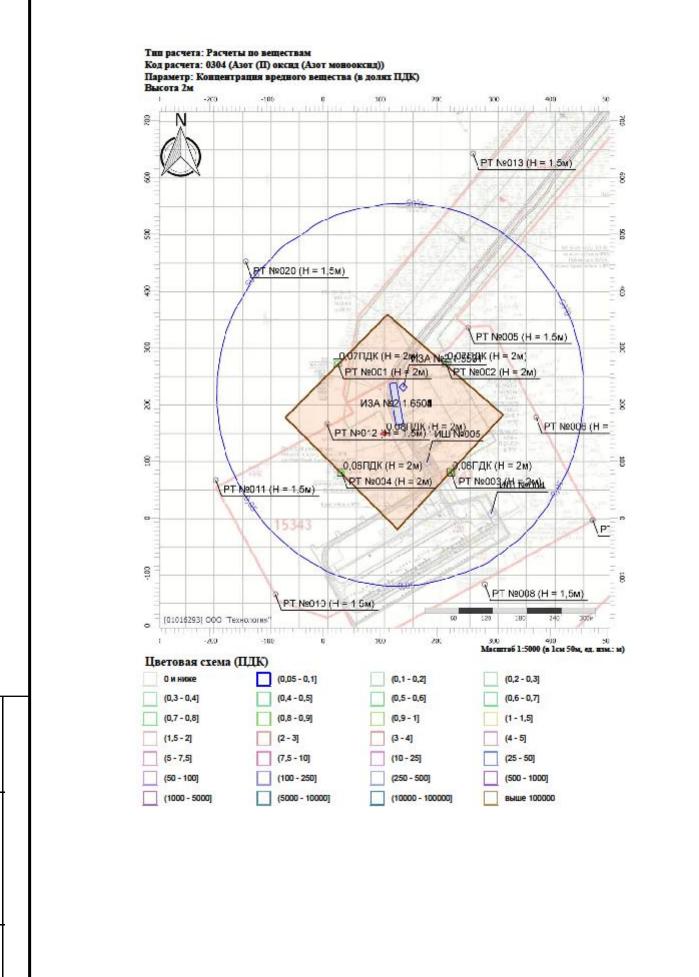
	Коорд	Коорд	ота)	Концентр	Концентр.	Напр	Напр	Напр	Напр С	Напр Скор			Фон	Фон	до исключения	- ž
Nº	Х(м)	Y(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	TOT				
2	215,50	273,50	2,00	0,02	-	232	0,68	-	12	-	* <u>-</u>	2				
1	25,00	273,50	2,00	0,02	-	123	0,68	-	(-	-	-	2				
3	224,50	80,50	2,00	0,01	-	320	0,93	-	87	-	% -	2				
4	32,00	80,50	2,00	0,01	-	40	0,68	-	0.5	-	10-	2				

Вещество: 6204 Азота диоксид, серы диоксид


	Коорд	Коорд	ота)	Концентр	Концентр.	Напр Скор		Напр	Напр Скор		Напр Скор		Фон	Фон	до исключения	_ <u>X</u>
Nº	Х(м)	Y(м)	Высо	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	T P				
2	215,50	273,50	2,00	0,49	-	238	0,98	-	c-	-		- 2				
1	25,00	273,50	2,00	0,40	-	115	0,98	-	2-	-	0.	- 2				
3	224,50	80,50	2,00	0,33	-	326	0,98	-	52	_	8	- 2				
4	32,00	80,50	2,00	0,33	_	37	1,33	-	(-	-		- 2				

Вещество: 6205 Серы диоксид и фтористый водород

	Коорд	Коорд	ота	Концентр	Концентр.	онцентр Напр С		Фон		Фон до исключения		- ž
Nº	Х(м)	Ү(м)	Bbico'	(д. ПДК)	(мг/куб.м)	ветр	ветр	доли ПДК	мг/куб.м	доли ПДК	мг/куб.м	ТОТ
2	215,50	273,50	2,00	0,04	-	239	1,05	-	87	-	-	2
1	25,00	273,50	2,00	0,04	-	114	1,05	-	2.0	-	\(\frac{1}{2}\)	2
3	224,50	80,50	2,00	0,03	-	327	1,05	-	1.0	-		2
4	32,00	80,50	2,00	0,03	-	37	1,40	-	:=	-		2


Взам. инв. №

Мзм	Коп уч	Пист	№лок	Полп	Лата

MHB.

Взам.

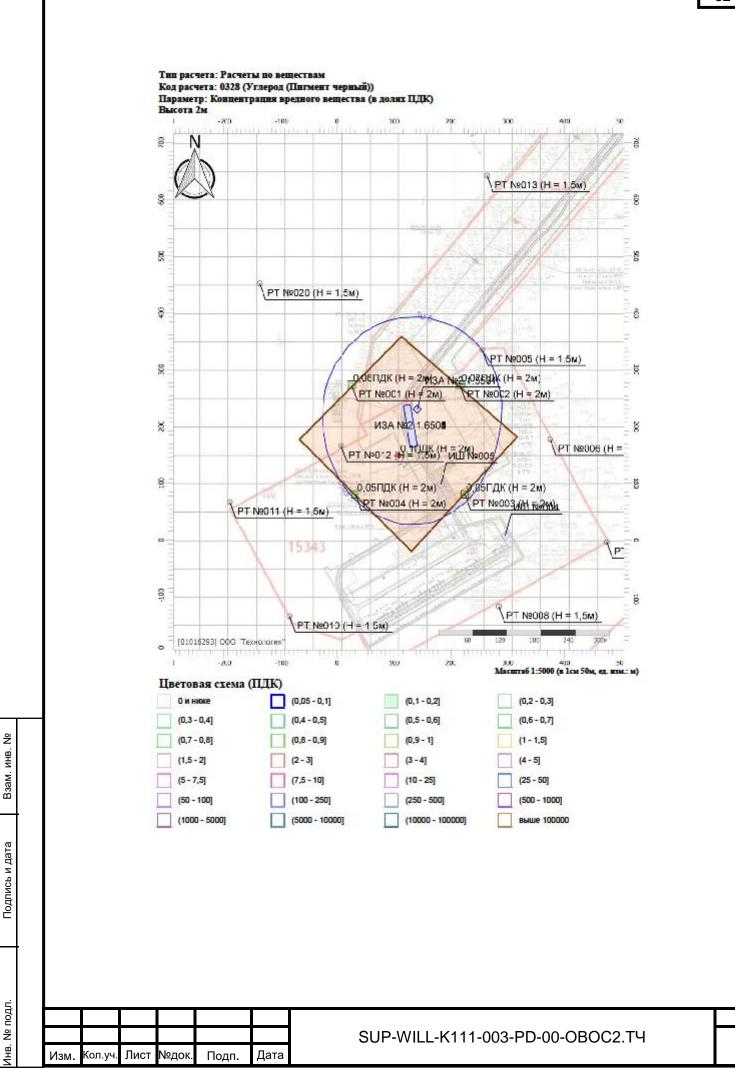
Инв. № подл.

Изм.

Кол.уч

Лист

№док.


Подп.

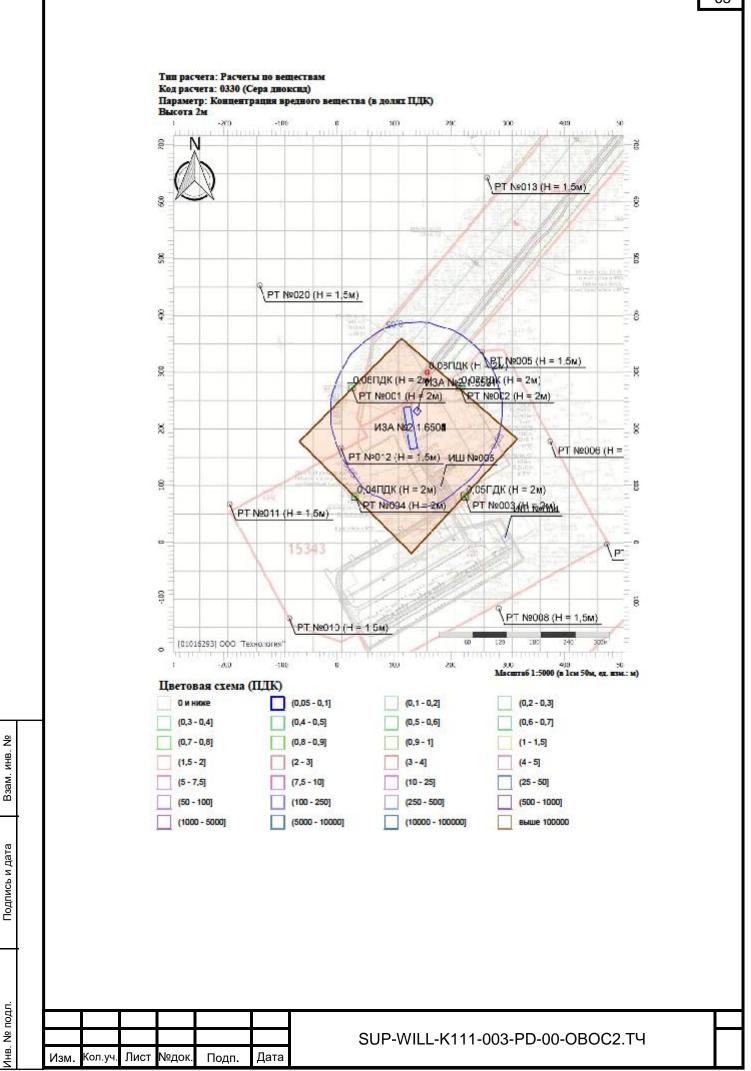
Дата

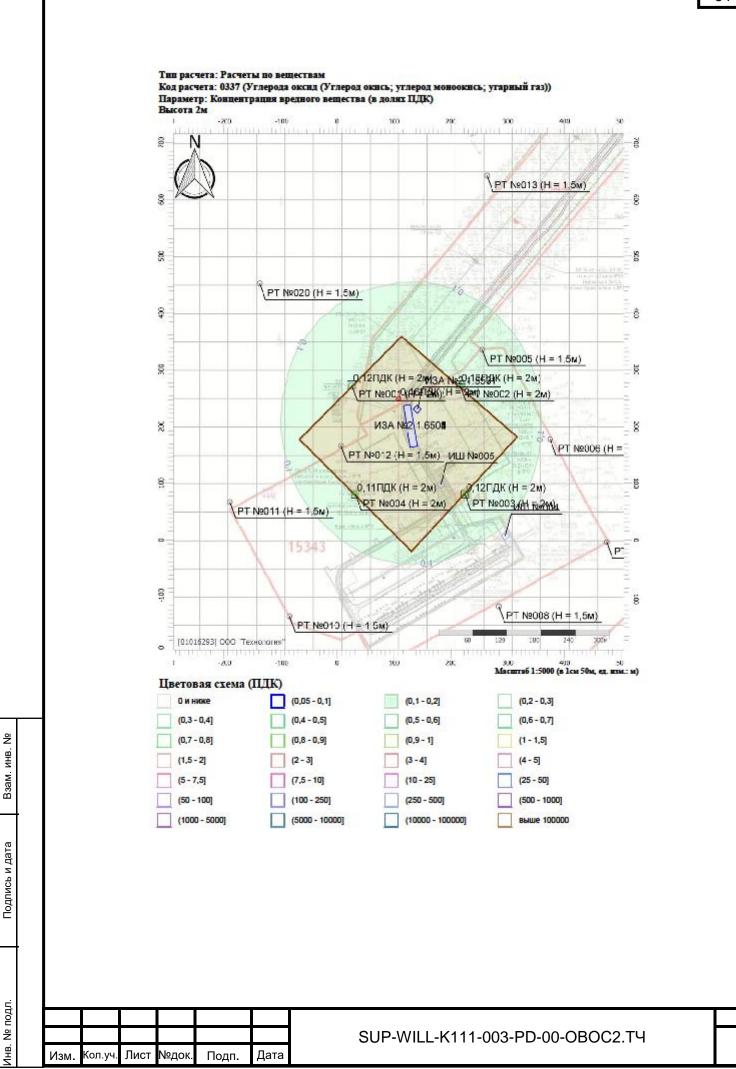
MHB.

Взам.

Подпись и дата

Лист


Изм.

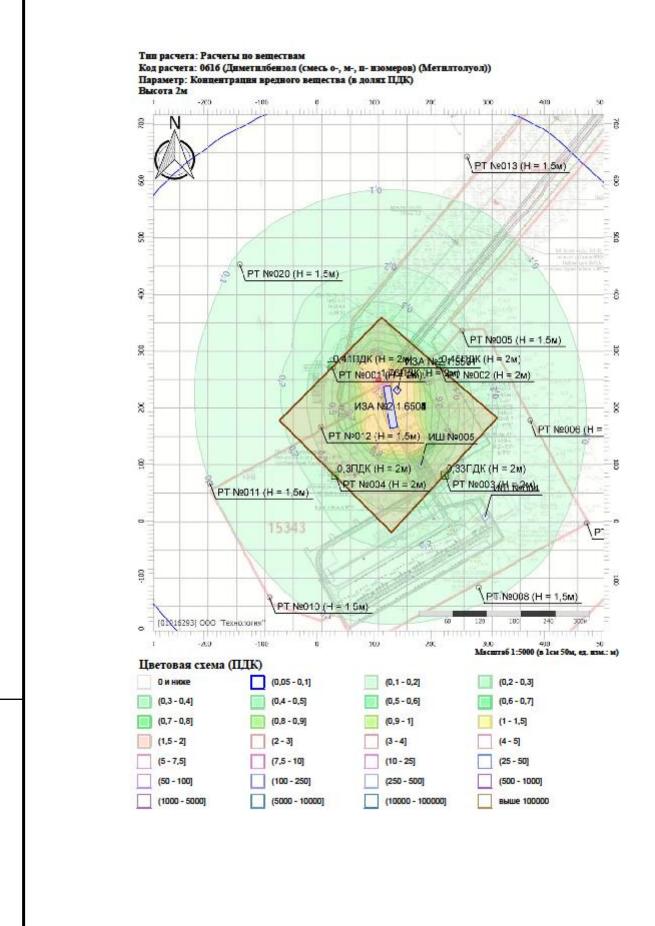

Кол.уч

№док.

Подп.

Дата

Лист


Изм.

Кол.уч

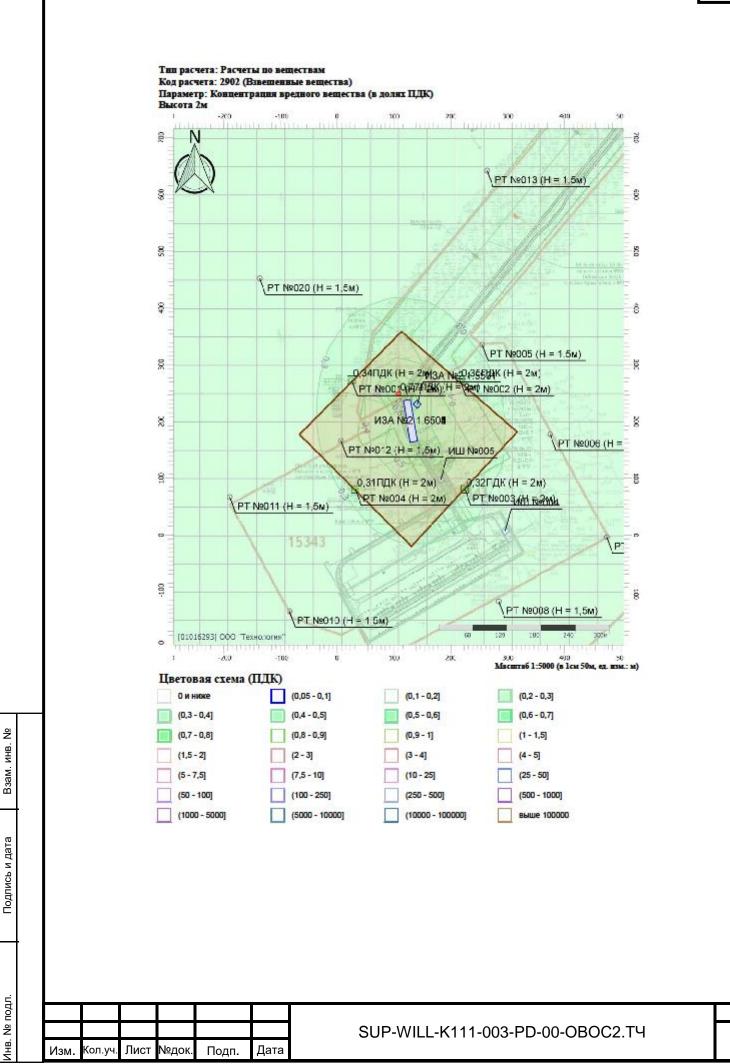
№док.

Подп.

Дата

Инв. № подл.

Изм.


Кол.уч

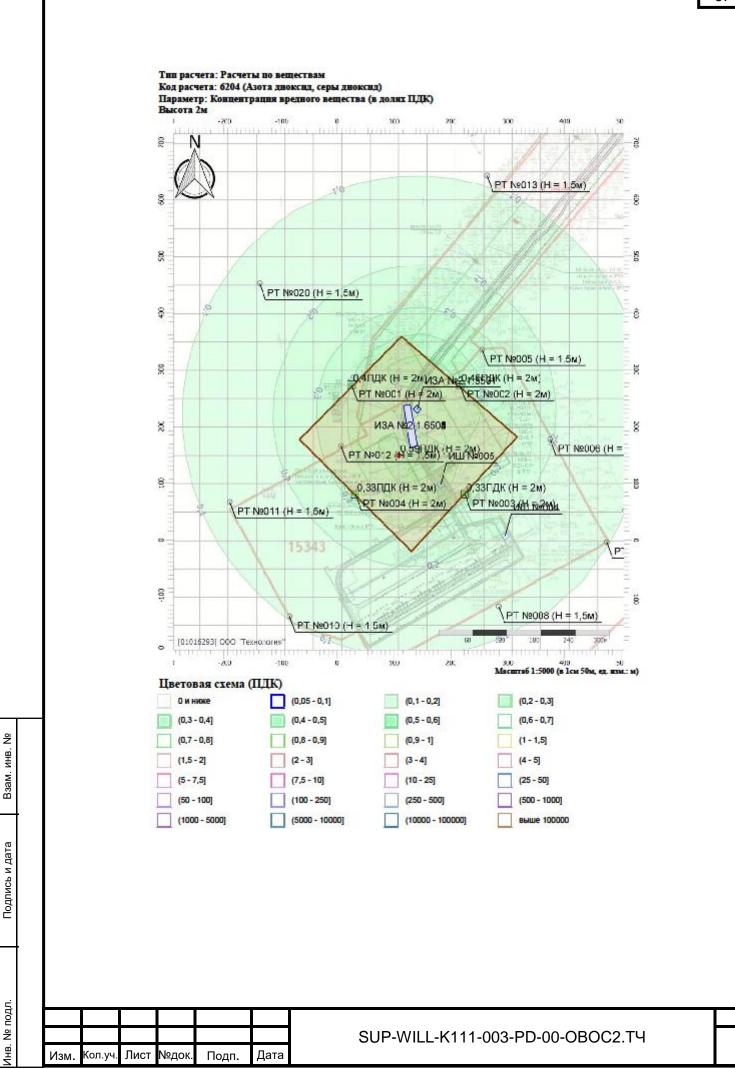
MHB.

Взам.

Подпись и дата

Лист №док. Подп. Дата

Лист


Изм.

Кол.уч

№док

Дата

Подп.

Лист

Изм.

Кол.уч

№док.

Подп.

Дата

Приложение Е Нормативы предельно допустимых выбросов загрязняющих веществ

Таблица Е1- Нормативы выбросов вредных веществ в целом по предприятию в период строительства

Код	Наименование вещества	Выброс веществ сущ.		Выброс веществ		ПДВ		Γοὸ
		положение на 2024 г.		на 2024 г.		z/c	т/год	ПДВ
		z/c	т/год	z/c	т/год			
1	2	3	4	5	6	7	8	9
	Марганец и его соединения (в пересчете на марганец (IV) оксид)	0,00030560	0,00016440	0,00030560	0,00016440	0,00030560	0,00016440	2024
	Азота диоксид (Двуокись азота; пероксид азота)	0,14160020	3,47965430	0,14160020	3,47965430	0,14160020	3,47965430	2024
0304	Азот (II) оксид (Азот монооксид)	0,02301010	0,56544380	0,02301010	0,56544380	0,02301010	0,56544380	2024
0328	Углерод (Пигмент черный)	0,01067760	0,21699600	0,01067760	0,21699600	0,01067760	0,21699600	2024
0330	Сера диоксид	0,03541160	1,13502700	0,03541160	1,13502700	0,03541160	1,13502700	2024
0333	Дигидросульфид (Водород сернистый, дигидросульфид, гидросульфид)	0,00002200	0,0000100	0,00002200	0,0000100	0,00002200	0,00000100	2024
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0,33447200	3,82777770	0,33447200	3,82777770	0,33447200	3,82777770	2024
0342	Гидрофторид (Водород фторид; фтороводород)	0,00021960	0,00002770	0,00021960	0,00002770	0,00021960	0,00002770	2024
0344	Фториды неорганические плохо растворимые	0,00023610	0,00002980	0,00023610	0,00002980	0,00023610	0,00002980	2024
	Диметилбензол (смесь о-, м-, п- изомеров) (Метилтолуол)	0,03125000	0,00003380	0,03125000	0,00003380	0,03125000	0,00003380	2024
0703	Бенз/а/пирен	0,00000010	0,00000396	0,0000010	0,00000396	0,00000010	0,00000396	2024
1325	Формальдегид (Муравьиный альдегид, оксометан, метиленоксид)	0,00119050	0,04320000	0,00119050	0,04320000	0,00119050	0,04320000	2024
	Керосин (Керосин прямой перегонки; керосин дезодорированный)	0,06196040	1,08628900	0,06196040	1,08628900	0,06196040	1,08628900	2024
2752	Уайт-спирит	0,03125000	0,00003380	0,03125000	0,00003380	0,03125000	0,00003380	2024
	Алканы С12-19 (в пересчете на С)	0,00784080	0,00036650	, , , , , , , , , , , , , , , , , , ,	0,00036650	0,00784080	0,00036650	
2902	Взвешенные вещества	0,00916670	0,00000990	0,00916670	0,00000990	0,00916670	0,00000990	2024

Взам. инв. №	
Подпись и дата	
в. № подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

2908 Пыль неорганическая: 70-20% SiO2	0,00094720	0,00006430	0,00094720	0,00006430	0,00094720	0,00006430	2024
Всего веществ :	0,68956050	10,35512296	0,68956050	10,35512296	0,68956050	10,35512296	
В том числе твердых :	0,02133330	0,21726836	0,02133330	0,21726836	0,02133330	0,21726836	
Жидких/газообразных:	0,66822720	10,13785460	0,66822720	10,13785460	0,66822720	10,13785460	

Взам. инв. №	
Подпись и дата	
<u>।</u> подл.	

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Лист

Приложение Ж Расчет уровня шума

Ж.1 Расчет уровня шума на период строительства

Источник данных: Эколог-Шум, версия 2.4.6.6023 (от 25.06.2020) [3D] Эколог-Шум. Модуль печати результатов расчета Серийный номер 01-01-6293, ООО "Технология" Copyright © 2006-2020 ФИРМА "ИНТЕГРАЛ"

1. Исходные данные

1.1. Источники постоянного шума

Z	Объект	Коор	Координаты точки	изна	Простран ствениый угол	Уровни зв	кового	укового давления (мощности, в случае $R=0$), д E , в полосах со среднегеометрическими частотами в Γ и	ия (моп негеомс	цности, тричес	В СЛУЧ: КИМИ Ч	ае R = (астота)), д.Б, в ин в Ги	октав	ных Г		В расчете
		X (M)	У (м)	Высота подъема (м)		Дистанция 31.5 63 125 250 500 1000 2000 4000 8000 3nnvepa (pacera) R (дасега) R (дасега	31.5	8	125	250	200	1000	2000	4000	0008		
100	передвижная ДЭС	108.00	153.00	00.0	12.57		63.0	63.0 63.0 57.0 58.0	57.0		53.0	53.0 51.0 46.0		38.0	33.0	56.0	Нет
004	трансформатор	295.50	7.00	00.0	0.00 12.57		72.0	72.0 74.6 75.0 71.0 68.0 60.0 60.0	74.6	75.0	71.0	0.89	0.09	0.09	60.0 73.2	73.2	Да

Источники непостоянного шума 12

Т Іл. ж. Іл. В В кс расчете		12. 79.0 84.0 Her	12. 81.4 83.0 Her	67.0 70.0 75.0 72.0 69.0 69.0 66.0 60.0 59.0 0. 8. 73.0 75.0 Ha
-		1.	1.	0.
HBIX	8000	62.0	65.0	59.0
, в октавны Ги	4000	0.99	71.0	0.09
0), дБ, 1 им в Гл	2000	72.0	74.0 71.0 65.0	0.99
чае R =	1000	72.0	77.0	0.69
и, в слу ескими	200	89.0 89.0 86.0 77.0 74.0 72.0 72.0 66.0 62.0	0.77 0.77 0.67	0.69
ицності метричк	250	77.0	79.0	72.0
ния (ме днегеол	125	0.98	75.0 75.0 5.0	75.0
ого давле cax co cpe;	8	0.68	75.0	70.0
Простран Уровни звукового давления (мощности, в случае $R=0$), дБ, в октавных гленный полосах со среднегеометрическими частотами в Γ и утол	31.5	0.68	75.0	67.0
	Дистанция 31.5 63 125 250 500 1000 2000 4000 8000 авакера (расчета) R (расчет	7.5	7.5	7.5
Простран ственный хтол		0.00 12.57	0.00 12.57	0.00 12.57
MICH	Высота подъема (м)	0.00	0.00	0.00
Координаты точки	Y (м) Высота подъема (м)	160.00	166.50	97.50
Kool	X (M)	120.00	127.00	182.00
Объект		автосамосвал	des	автотранспорт
		тосал	льдо	тотр

2. Условия расчета 2.1. Расчетные точки

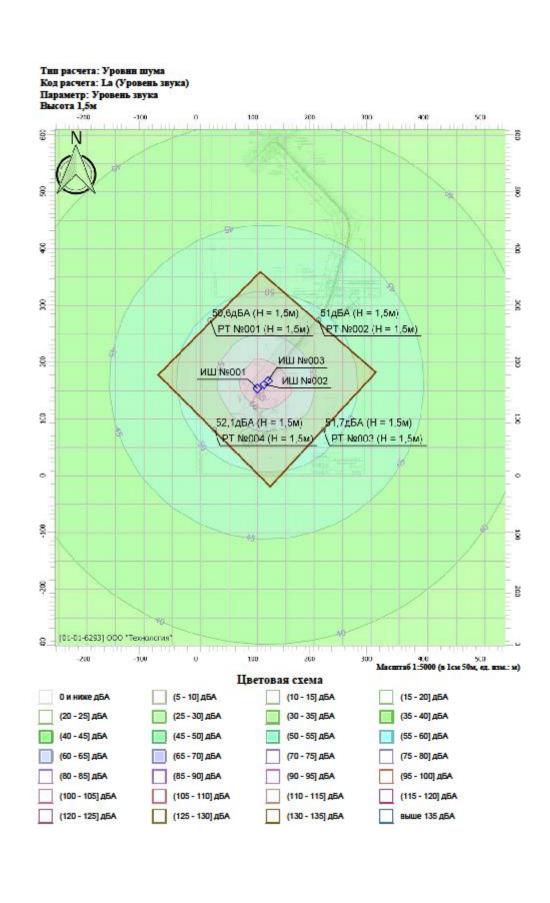
<u>:</u>	E. I. I GO TO HIND I O THAT					
z	Объект	Koop	Координаты точки	нси	Типточки	В расчете
		X (M)	Y (M)	Высота		
ĕ				подъема (м)		
001	РТ на промзоне	25.00	273.50	1.50	Расчетная точка на границе производственной зоны	Нет
002	РТ на промзоне	215.50	273.50	1.50	Расчетная точка на границе производственной зоны	Нет
003	РТ на промзоне	224.50	80.50	1.50	Расчетная точка на границе производственной зоны	Нет
004	РТ на промзоне	32.00	80.50	1.50	Расчетная точка на границе производственной зоны	Her
900	северный румб	255.00	335.50	1.50	Расчетная точка на границе производственной зоны	Да
900	с-восточный румб	374.50	177.50	1.50	Расчетная точка на границе производственной зоны	Да
002	восточный румб	474.00	-3.50	1.50	Расчетная точка на границе производственной зоны	Да
800	ю-восточный румб	284.00	-117.00	1.50	Расчетная точка на границе производственной зоны	Да
600	южный румб	71.00	-222.50	1.50	Расчетная точка на границе производственной зоны	Да
010	ю-западный румб	-84.00	-134.50	1.50	Расчетная точка на границе производственной зоны	Да
011	западный румб	-189.00	67.00	1.50	Расчетная точка на границе производственной зоны	Да
012	012 с-западный румб	6.50	166.00	1.50	Расчетная точка на границе производственной зоны	Да
013	013 северный румб	263.50	642.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

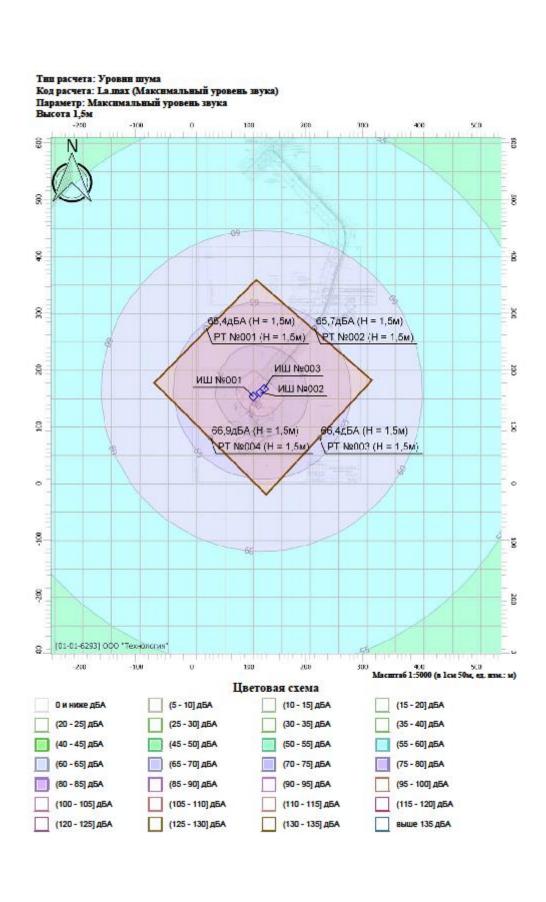
				35		
014	с-восточный румб	628.50	347.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
015	восточный румб	774.50	-56.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
016	ю-восточный румб	412.50	-391.50	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
017	южный румб	97.00	-526.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
018	ю-западный румб	-314.50	-342.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
019	западный румб	-489.50	00.96	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
020	с-западный румб	-136.50	452.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да

2.2	Расчетные площадки									
z	Объект	Координаты точки 1 Координаты точки 2 Ширина (м)	гочки 1	Координат	ы точки 2		Высота подъема (м)	Шаг сетки (м)	5363	В
		X (M)	Y (M)	X (M)	Y (M)			X	Y	
001	Расчетная площадка	-1042.00	282.25	282.25 1358.00	282.25 1833.50	1833.50	1.50	50.00	50.00 Да	Да

Вариант расчета: "эксплуатация"


3. Результаты расчета (расчетный параметр "Звуковое давление")

3.1. Результаты в расчетных точках Точки типа: Расчетная точка на границе производственной зоны


	Расчетная точка	Координа	Координаты точки Вы	Высота	31.5	63	125	250	200	1000	2000	4000	8000	Га.экв	Га.макс
	1		0.5	E											
Z	Название	X (M)	Y (M)												
002	восточный румб	474.00	-3.50	1.50	28.2	30.7	35.4	32.6	29.2	28.4	23.4	11.1	0	32.40	47.70
011	западный румб	-189.00	00.79	1.50	25.9	28.8	33.6	30.5	27.1	26.4	21.2	6.7	0	30.30	46.00
900	с-восточный румб	374.50	177.50	1.50	30.9	33.7	38.5	35.5	32.3	31.8	27.5	17	0	35.80	51.10
012	с-западный румб	6.50	166.00	1.50	31.4	34.3	39.2	36.2	33	32.6	28.5	18.3	1.9	36.60	51.90
002	северный румб	255.00	335.50	1.50	29.2	32.1	37	33.9	30.7	30.2	25.7	14.1	0	34.10	49.60
800	ю-восточный румб	284.00	-117.00	1.50	30.5	33	37.7	34.9	31.6	30.9	26.3	15.6	0	34.90	50.00
010	ю-западный румб	-84.00	-134.50	1.50	26.4	29.3	34.1	31	27.6	27	21.8	7.7	0	30.90	46.50
600	южный румб	71.00	-222.50	1.50	26.9	29.7	34.5	31.4	28.1	27.4	22.3	9.8	0	31.30	46.90

Год	Гочки типа: Расчетная точка на границе санитарно-защ	границе са.	нитарно-за	ищитной зоны	OHPI										
	Расчетная точка	Координаты точки Вы	ты точки	Высота	31.5	63	125	250	200	1000	2000	4000	8000	Га.экв	Га.макс
				Œ											
Z	Название	X (M)	Y (M)	8											
015	восточный румб	774.50	-56.00	1.50	22.1	24.8	29.5	26.3	22.7	21.5	14.7	0	0	25.40	41.40
019	западный румб	-489.50	96.00	1.50	21	23.8	28.6	25.2	21.6	20.4	13.3	0	0	24.30	40.50
014	с-восточный румб	628.50	347.00	1.50	23.5	26.2	31	27.8	24.3	23.3	17.2	0	0	27.20	43.10
020) с-западный румб	-136.50	452.00	1.50	23.9	26.7	31.5	28.3	24.8	24	18.1	1.2	0	27.90	43.80
013	з северный румб	263.50	642.00	1.50	22.7	25.5	30.3	72	23.5	22.5	16.2	0	0	26.40	42.40
016	5 ю-восточный румб	412.50	-391.50	1.50	23.2	25.8	30.5	27.4	23.9	22.8	16.4	0	0	26.70	42.60
018	з ю-западный румб	-314.50	-342.00	1.50	21.2	23.9	28.7	25.4	21.8	20.5	13.5	0	0	24.50	40.60
017	017 южный румб	97.00	-526.00	1.50	21.7	24.5	29.2	25.9	22.3	21.1	14.3	0	0	25.10	41.10

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

ПРИЛОЖЕНИЕ К РАСЧЕТ КОЛИЧЕСТВА ОБРАЗУЮЩИХСЯ ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

К.1 ПЕРИОД СТРОИТЕЛЬСТВА

4 68 112 02 51 4 Тара из черных металлов, загрязненная

0,0007

T

лакокрасочными материалами (содержание менее 5%)

Количество образующихся отходов тары (тара и упаковка металлические, загрязненные остатками краски) P, τ , после проведения работ по окраске изделий, определено по формуле $P = \Sigma \, \text{Qi} \, / \, \text{Mi x mi x 10 -3},$ (V.2)

где Qi –расход сырья i-того вида, кг;

Мі – вес сырья і-того вида в упаковке, кг;

ті – вес пустой упаковки из-под сырья і-того вида, кг;

10-3 или 0,001 – коэффициент перевода из килограммов в тонны.

В виду того, что пустая тара из-под лакокрасочных материалов не очищается от остатков содержимого, то количество тары полученной расчетом увеличивается на количество затвердевших лаков и красок.

Расчет образования отхода «Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%)» в таблице К.1.

Таблица К.1 - Расчет образования отхода «Тара из черных металлов, загрязненная

лакокрасочными материалами (содержание менее 5%)

Отход	Количество израсходованного ЛКМ, т	Количество ЛКМ в одной емкости, т	Количество тары, шт	Вес пустой тары, т	Количество отходов тары, т
Тара	0,0018	0,01	1	0,0007	0,0007
Остатки краски 3 %					0,000
Итого тара с остатками краски					0,0007

9	19	100	01	20	5	Остатки	И	огарки	стальных	сварочных	0.0025	_
эл	ектр	одов									0,0033	<u> </u>
9	19 1	00 02	20 4	4 Шл	ак	сварочнь	<u>й</u>				0,00175	<u>T</u>
4) 5 1	83 01	60 !	5 От	χΩΓ	ы упаково	วน⊦	ого карт	она незагоя	зненные	0.0035	Т

Расчет отходов от отработанных электродов при проведении сварочных работ произведен на основании удельных показателей нормативных объемов образования отходов.

Для отходов расчет нормативной массы образования М, тонн, производится по стандартной формуле:

$$M = Q * Np$$
 (N.3)

или

$$M = Q * Np2$$
 (N.4)

где Q - масса израсходованных электродов в течение года, т;

Np - норматив для одной расчетной единицы (окалина и сварочный шлак), %, Np=10,00 – коэффициент образования огарков сварочных электродов, %;

Np2 - норматив для одной расчетной единицы (огарки сварочных электродов), %, Np2 = 5 - коэффициент потерь на окалину и сварочный шлак, %

Для упаковки электродов используется картонная тара. Утилизации подлежит 100 %.

Вес одной коробки с электродами

0.005

т

Вес пустой тары

0,0005

Т

Результаты расчета образования отходов при производстве сварочных работ приведены в таблице К.4.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Таблица К.4 - Расчет образования отходов, образующихся при производстве сварочных работ

Наименование отхода	Количество используемого сырья, т	Норма образования отхода, %	Количество отхода, т
Остатки и огарки стальных сварочных электродов	0,035	10	0,0035
Шлак сварочный	0,032	5	0,00175
Отходы упаковочного картона незагрязненные	0,005	100	0,0035

9 19 204 02 60 4 Обтирочный материал, загрязненный нефтью

или нефтепродуктами (содержание нефти или нефтепродуктов 0,103

T

менее 15 %)

Данный отход включает ветошь обтирочную, образующуюся при обслуживании строительных машин и дорожной техники.

Норматив образования отхода принят на основании методической разработки «Оценка количеств образующихся отходов производства и потребления», г. СПб, 1997 г.

Расчёт количества ветоши Q, т, производится по формуле

Q = N*Si*Ki*10-3.

(M.5)

где N – норма использования ветоши, кг/сут;

Si – продолжительность периода работ, сутки;

Кі – численность рабочих в наиболее многочисленную смену, человек;

10-3 – коэффициент перевода из килограммов в тонны;

Расчётное количество отхода «Обтирочный загрязнённый материал, нефтью нефтепродуктами (содержание нефти или нефтепродуктов менее 15%» представлено в таблице

Таблица К.5 - Расчётное количество отхода «Обтирочный материал, загрязнённый маслами (содержание масел менее 15 %)»

Nº	Наименование	Количество	Период	Норматив	Количество
	отхода	рабочих,	строительства, сут.	образования на	отхода, т
		человек		одного человека, кг/сут	
1	Ветошь промасленная	19	54	0,1	0,103

<u>7 33 100 01 72 4 Мусор от офисных и бытовых помещений</u> организаций несортированный (исключая крупногабаритный)

0,137

Данный отход включает твердые коммунальные отходы (ТКО), образующиеся в процессе трудовой деятельности работников предприятия. Мусор собирается при ежесменной уборке административных, служебных и бытовых помещений на площадке временных зданий. Для сбора мусора служат специальные металлические контейнеры с крышками.

Количество ТБО определено согласно «Справочным материалам по удельным показателям образования важнейших видов отходов производства и потребления, НИЦПУРО, 1999 г.» [М. 3.2] таблица, графа 3 строка 6] и справочнику «Санитарная очистка и уборка населённых мест. Справочник. М., Стройиздат, 1990» [таблица 10].

Норма образования бытового мусора на 1 человека

40 0,11 кг/год кг/сут

Расчёт количества бытового мусора Q, т, проводится по формуле

 $Q = \sum ((N*Si*Ki)*10-3)i,$

(0.6)

где N – норма образования бытовых отходов, кг/сут;

Si – продолжительность периода работ, сут (количество смен);

Кі – численность рабочих в наиболее многочисленную смену, чел.

Расчёт количества отхода «Мусор от бытовых помещений организаций несортированный (исключая крупногабаритный)» за период строительства представлен в таблице К.6.

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Таблица К.6 - Расчёт количества отхода «Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)»

Nº	Наименование отхода	Количество работающих, чел.	Период строительства, дней	Норматив образования на 1 человека, кг/сут.	Количество отхода, т
1	TK○	23	54	0.11	0 137

4 34 110 0 2 29 5 Отходы пленки полиэтилена и изделий из нее незагрязненные

0.001

I

Исходной информацией для оценки количества отходов являются данные по объему потребности на материалы, из которых образуются отходы. Количество отходов, Мотх, тонн, рассчитывается по формуле

Motx = Mi x nnot, (N.7)

где Мі - объем потребности в материалах, т;

ппот - удельный показатель образования отходов, %.

Расчет количества отходов, образующихся при строительстве, выполнен для основных материалов и изделий, имеющих наиболее значительную массу (без учета номенклатуры). Пересчет в м3 и тонны выполнен по физической плотности материалов и веществ с поправкой на насыпную плотность отходов.

Результаты расчета сведены в таблицу К.7.

Таблица К.7 - Расчет образования отходов, образующихся при основных строительно-монтажных работах

Nº	Наименование материала - источника	Количество	Норматив	Количество
	отхода	материала, т	образования,	отхода, т
1	Лента полиэтиленовая	0,0113	% 4	0,00045

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Приложение Л Объемы отходов и операции по обращению с отходами

Таблица Л.1 – Объемы отходов и операции по обращению с отходами в период

строительства							
Название отхода	Код по ФКК О	Кл. оп. дл я ОП С	Класс токсичн ости	Отходообра зующий вид деятельнос ти	Норматив образования [т/период строительс тва]	Операция по обращению	Место накопления отхода
1	2	3	4	5	6	7	8
Итого отходов I класса о	паснос	ти:	I		0,000		
Итого отходов II класса					0,000		
Итого отходов III класса	опасно	сти:			0,000		
Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%)	4 68 112 02 51 4	4	3	Покрасочные работы	0,0007	Передача по договорам Подрядчика на размещение на Полигон по сбору и утилизации нефтесодержащих, буровых и бытовых отходов на Западно- Салымском месторождении ООО «СПД»	Площадка накопления без ящиков и контейнеров
Обтирочный материал, загрязненный нефтью или нефтепродуктами(соде ржание нефти или нефтепродуктов менее 15 %)	9 19 204 02 60 4	4	-	Обтирка рук, оборудования	0,103	Передача по договорам Подрядчика на обезвреживани на Полигон по сбору и утилизации нефтесодержащих, буровых и бытовых отходов на Западно- Салымском месторождении ООО «СПД»	Закрытый металлическ ий ящик
Шлак сварочный	9 19 100 02 20 4	4	2	Сварочные работы	0,00175	Передача по договорам Подрядчика на размещение на Полигон по сбору и утилизации	Контейнер с крышкой
Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	4	4	Уборка нежилых помещений	0,137	нефтесодержащих, буровых и бытовых отходов на Западно- Салымском месторождении ООО «СПД»	
Итого отходов IV класса	ОПАСНО	сти:			0,5934		
Остатки и огарки стальных сварочных электродов	9 19 100 01 20 5	5	4	Сварочные работы	0,0035	Передача по договорам Подрядчика на размещение на Полигон по сбору и утилизации нефтесодержащих, буровых и бытовых отходов на Западно- Салымском месторождении ООО «СПД»	Металлическ ий контейнер
Отходы упаковочного картона незагрязненные	4 05 183 01 60 5	5	4	Сварочные работы	0,0035	Передача по договорам Подрядчика специализированным	Полиэтилено вый мешок/тара
Отходы пленки полиэтилена и изделий из нее незагрязненные	4 34 110 02 29 5	5	4	Устройство изоляции	0,00045	предприятиям на переработку Например, ООО "НСС" Л020-00113-86/00046081 от 03.05.2023	Полиэтилено вый мешок/тара
Итого отходов V класса Итого:	опасно	сти:	1	•	0,00745 0,60085		

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

ПРИЛОЖЕНИЕ М РАСЧЕТ ПЛАТЫ ЗА НЕГАТИВНОЕ ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ

Таблица M.1 – Расчет платы за выбросы вредных веществ в атмосферу за период строительства

			T			1 1
Код	Наименование	Валовый	Норматив	Доп.	Доп.	Норматив
	вещества	выброс,	платы,	коэффициент	Коэффициент,	платы,
		т/период	руб/тонн		Кот	руб
0337	Углерод оксид	3,780000	1,6	1,32	2	15,96672
0301	Азот (IV) оксид	3,467520	138,8	1,32	2	4270.64
	(Азота диоксид)				2	1270,61
2732	Керосин	1,080000	6,7	1,32	2	19,10304
0330	Сера диоксид	1,134000	45,4	1,32		
	(Ангидрид				2	
	сернистый)					135,9167
1325	Формальдегид	0,043200	1823,6	1,32	2	207,9779
0703	Бенз/а/пирен (3,4-	0,000003960	5472968,7	1,32	0	
	Бензпирен)				2	57,2166
0304	Азот (II) оксид	0,563472	93,5	1,32	2	422.0074
	(Азота оксид)				2	139,0874
			•	ИТОГО		1845,879
						- ,

Таблица М.2 – Расчет платы за размещение отходов на период строительства

Наименование отхода	Код ФККО	Кол-во отхода, передаваемого для размещения, т	Норматив платы за размещение 1 т отходов, руб	Коэффициент к ставке платы	Доп. коэффициент 1,26	Плата за размещение отхода, руб
Шлак сварочный	9 19 100 02 20 4	0,00175	663,2	2	1,32	3,06
Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%)	4 68 112 02 51 4	0,0007	663,2	2	1,32	1,23
Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	0,137	95			13,015
Остатки и огарки стальных сварочных электродов	9 19 100 01 20 5	0,0035	17,3	2	1,32	0,16
Итого период строительства				•		17,46

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

ПРИЛОЖЕНИЕ Р ЛИЦЕНЗИЯ НА ДЕЯТЕЛЬНОСТЬ ПО ОБРАЩЕНИЮ С ОТХОДАМИ

<u>ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ</u> ПРИРОДОПОЛЬЗОВАНИЯ

(Полное наименование Росприроднадзора или территориального органа Росприроднадзора, выдавшего выписку из реестра лицензий)

ул. Б. Грузинская, д. 4/6, Москва, ГСП-3, 123995 —, (499) 254-50-72

(Адрес места нахождения, электронная почта, контактный телефон Росприроднадзора или территориального органа Росприроднадзора, выдавшего выписку из реестра лицензий)

Выписка из реестра лицензий № <u>6019</u> по состоянию на <u>06: 27</u> "<u>02" августа 2023 МСК</u>

1. Статус лицензии: Действующая

(действующая/приостановлена/приостановлена частично/прекращена)

- 2. Регистрационный номер лицензии: Л020-00113-86/00667505
- 3. Дата предоставления лицензии: 01.08.2023
- 4. Полное и (в случае, если имеется) сокращенное наименование, в том числе фирменное наименование, и организационно-правовая форма юридического лица, адрес его места нахождения, номер телефона, адрес электронной почты, государственный регистрационный номер записи о создании юридического лица:

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "САЛЫМ

<u>ПЕТРОЛЕУМ ДЕВЕЛОПМЕНТ"</u>

000 "СПД"

628327, 628327, Ханты-Мансийский автономный округ - Югра, М.Р-Н НЕФТЕЮГАНСКИЙ, С.П. САЛЫМ, П САЛЫМ, УЛ ЮБИЛЕЙНАЯ, СТР. 15 ОГРН: 1228600007525

<u>+7(495)5189720</u>

info@spd.ru

(заполняется в случае, если лицензиатом является юридическое лицо)

5. Наименование иностранного юридического лица, наименование филиала иностранного юридического лица, аккредитованного в соответствии

с Федеральным законом «Об иностранных инвестициях в Российской Федерации», адрес (место нахождения), номер телефона и адрес электронной почты филиала иностранного юридического лица на территории Российской Федерации, номер записи аккредитации филиала иностранного юридического лица:

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Лист

2

(заполняется в случае, если лицензиатом является иностранное юридическое лицо)

6. Фамилия, имя и (в случае, если имеется) отчество индивидуального предпринимателя, государственный регистрационный номер записи о государственной регистрации индивидуального предпринимателя, а также иные сведения, предусмотренные пунктом 5 части 2 статьи 21 Федерального закона «О лицензировании отдельных видов деятельности»:

(заполняется в случае, если лицензиатом является индивидуальный предприниматель)

- 7. Идентификационный номер налогоплательщика: 8619017847
- 8. Адреса мест осуществления лицензируемого вида деятельности:
 - Ханты-Мансийский автономный округ Югра, р-н Нефтеюганский, Западно-Салымское месторождение, полигон по сбору и утилизации нефтесодержащих, буровых и бытовых отходов.
- 9. Лицензируемый вид деятельности с указанием выполняемых работ, оказываемых услуг, составляющих лицензируемый вид деятельности:

ЛИЦЕНЗИРОВАНИЕ ДЕЯТЕЛЬНОСТИ ПО СБОРУ, ТРАНСПОРТИРОВАНИЮ, ОБРАБОТКЕ, УТИЛИЗАЦИИ, ОБЕЗВРЕЖИВАНИЮ, РАЗМЕЩЕНИЮ ОТХОДОВ I - IV КЛАССОВ ОПАСНОСТИ

			лицензирующим ии реквизиты такс	-	-	О	предоставлении
Прика	13 О П	тредоставле	нии лицензии № 1	682 от 01.	.08.2023 г.		
11							
11.							

(иные сведения)

Выписка носит информационный характер, после ее составления в реестр лицензий могли быть внесены ирменения.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 46С4884ЕВF795Е42FCA3C02AB9DE5C62

Владелец: Савина Екатерина Владимировна министерство цифрового РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

Действителен с 21.02.2023 по 16.05.2024

(должность уполномоченного лица) (ЭП уполномоч

(ЭП уполномоченного лица)

(И.О.Фамилия уполномоченного лица)

Примечание: Выписка сформирована средствами ГИС ТОР КНД Минцифры России на основе сведений, полученных от Федеральной службы по надзору в сфере природопользования.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 46C4884EBF795E42FCA3C02AB9DE5C62 Владелец: МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ Действителен с 21.02.2023 по 16.05.2024

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Северо-Уральское межрегиональное управление Федеральной службы по надзору в сфере природопользования

(Полное наименование <u>Росприроднала ора</u> или территориального органа <u>Росприроднала ора</u> выдавшего выписку из реестра лицензий)

625000, ОБЛАСТЬ ТЮМЕНСКАЯ, Г. ТЮМЕНЬ, УЛ. РЕСПУБЛИКИ, Д. 55, ОФИС 403, ppn72@ppn.gov.ru, 8 (3452) 39-09-40

(Адрес места нахождения, электронная почта, контактный телефон Росприроднадзора или территориального органа Росприроднадзора, выдавшего выписку из реестра лицензий)

Выписка из реестра лицензий № 53701 по состоянию на 14:10:49 16.12.2022 MCK

1. Статус лицензии: Действующая

(действующая/приостановлена/приостановлена частично/прекращена)

- Регистрационный номер лицензии: ЛО20-00113-86/00046081
- Дата предоставления лицензии: 16.12.2022
- 4. Полное и (в случае, если имеется) сокращенное наименование, в том числе фирменное наименование, и организационно-правовая форма юридического лица, адрес его места нахождения, государственный регистрационный номер записи о создании юридического лица:

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "НЕФТЕСПЕЦСТРОЙ", ООО "НСС", Общество с ограниченной ответственностью, 628680, Ханты-Мансийский Автономный округ - Югра, г Мегион, ул Александра Жагрина, 3д. 24, 1028601355210

(заполняется в случае, если лицензиатом является юридическое лицо)

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

SUP-WILL-K111-003-PD-00-OBOC2

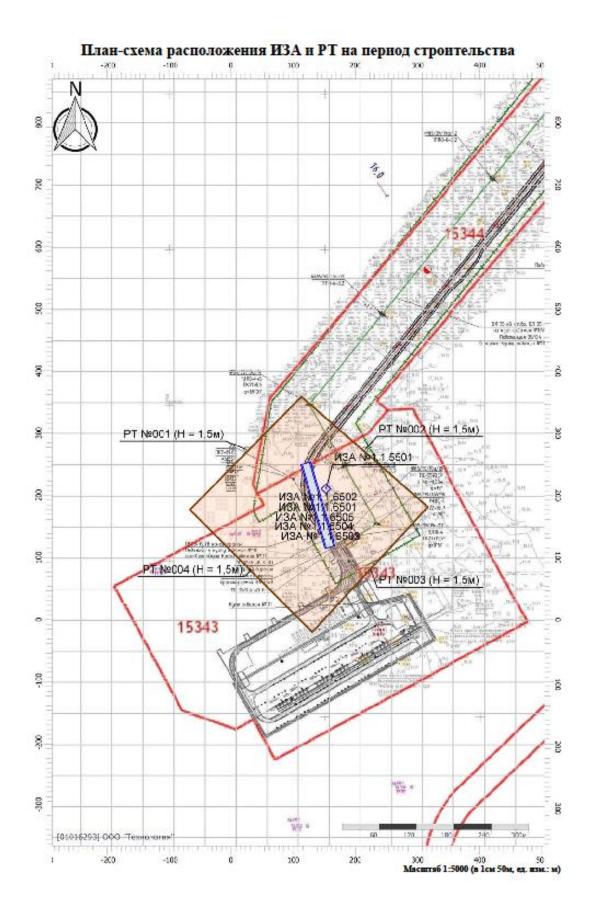
9

Выписка носит информационный характер, после ее составления в реестр лицензий могли быть внесены изменения.

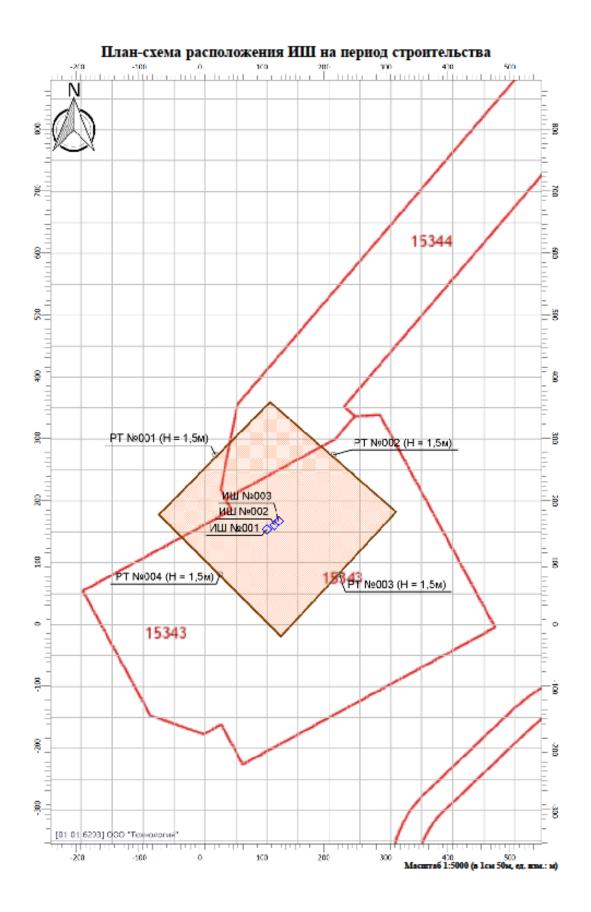
Komy Berng: CEREPO-VPARISCEOE MEXPERMOFARISCOE
VEHARLERRE POCTEMPOGRAÇÃO DA
Coppropriate - 0.774/CDF.780637ARISPH41 BCJ-4A/CI24C15R48
Bragouris: 3.680/cma Auria Bacteriorum
Josephoromorie - 0.91,031,2022 - 09,031,2023

Заместитель руководителя Северо-Уральского межрегионального управления Росприродналаора

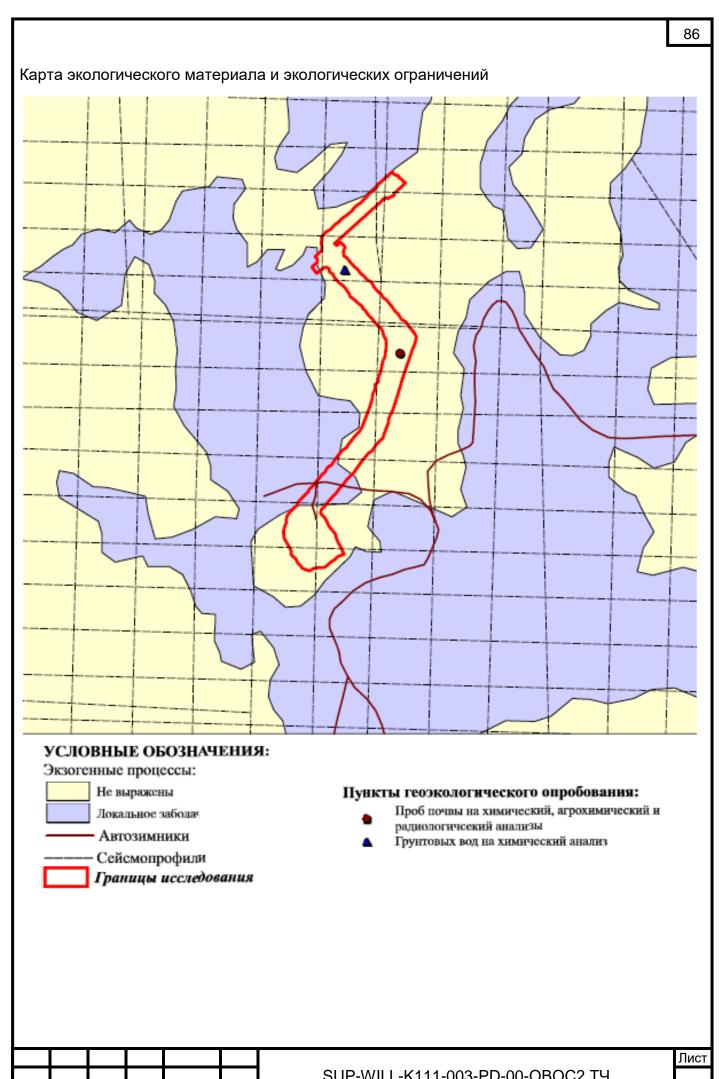
(эт уполюменного лица)


Зайцева Анна Васильевна

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата


ГРАФИЧЕСКАЯ ЧАСТЬ

Лист	Наименование	Примечание
1	Карта-схема размещения источников загрязнения атмосферы в период строительства. Масштаб 1:5000	
2	Карта-схема размещения источников шума. Масштаб 1:5000	
3	Карта экологического материала и экологических ограничений Масштаб 1:25000	
4	Рекультивация нарушенных территорий. Масштаб 1:2000	
5	Рекультивация нарушенных территорий. Масштаб 1:2000	

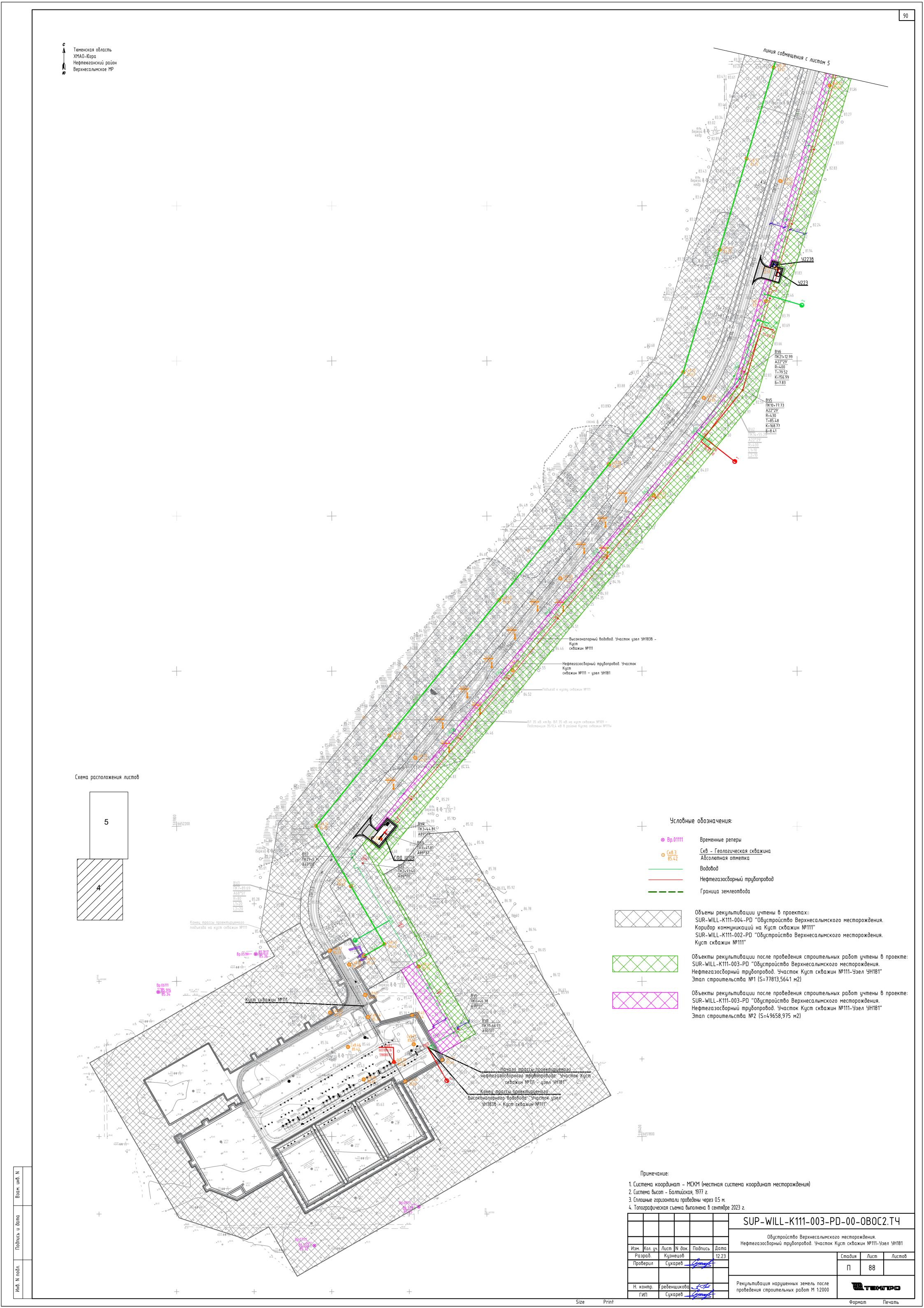

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

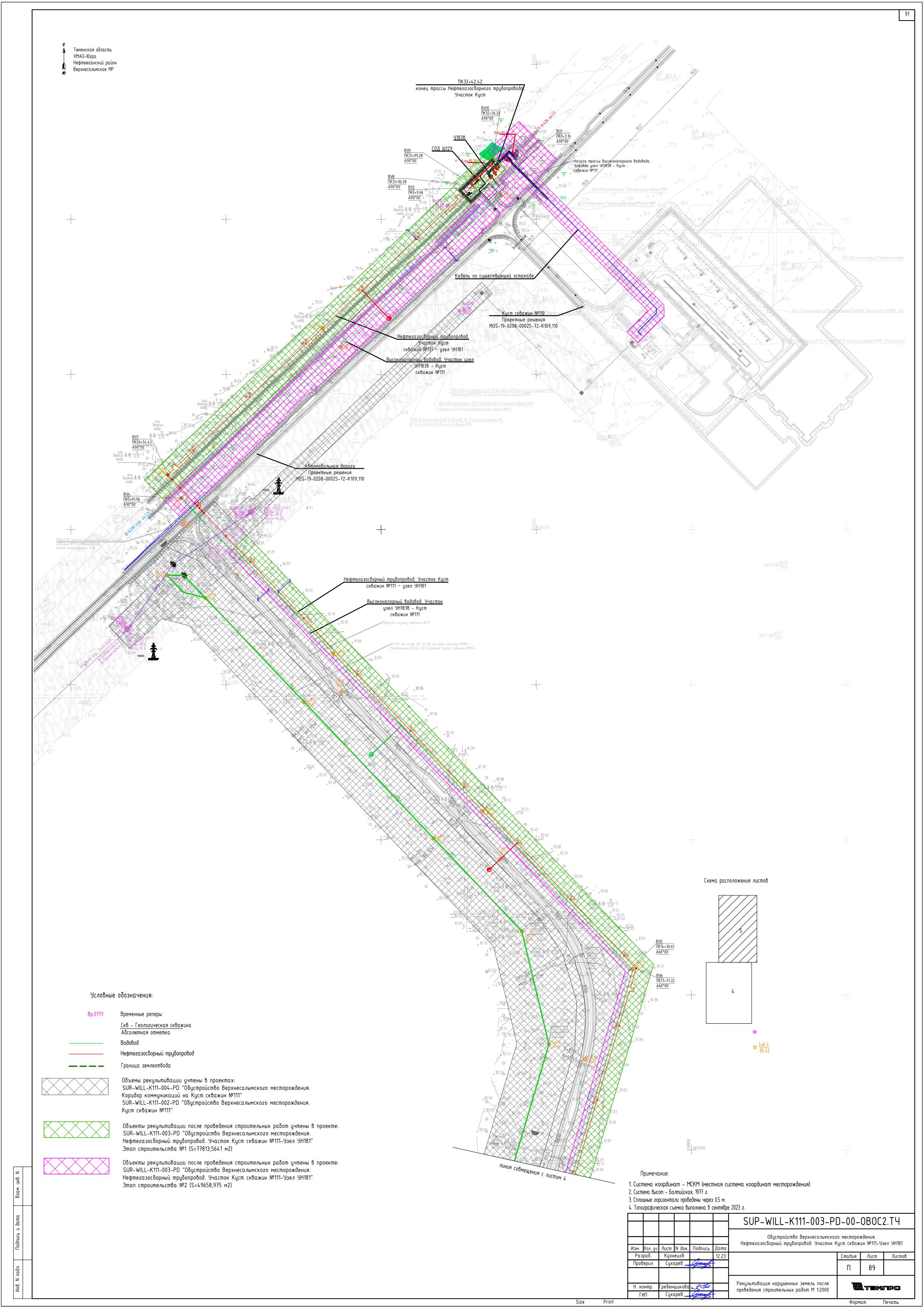
Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

Изм.	Кол.уч.	Лист	№док.	Подп.	Дата

SUP-WILL-K111-003-PD-00-OBOC2.TY

Кол.уч.


Изм.


Лист №док.

Подп.

Дата

84

